基于深度学习的人脸识别技术以数据为驱动,对输入图像的质量要求较高。在铁路刷脸进/出站场景下,为滤除因各种因素导致的成像异常的人脸图像,提升人脸识别精度,文章研究人脸图像正常的特征分布,通过知识迁移,提出无须针对异常样本建模...基于深度学习的人脸识别技术以数据为驱动,对输入图像的质量要求较高。在铁路刷脸进/出站场景下,为滤除因各种因素导致的成像异常的人脸图像,提升人脸识别精度,文章研究人脸图像正常的特征分布,通过知识迁移,提出无须针对异常样本建模的人脸图像异常检测算法。理想情况下,该算法对人脸图像异常检测的ROC曲线下面积(AUROC,Aera Under Receiver Operating Characteristic)可达到0.979。实验结果表明,该算法在计算精度与运行成本的组合上具有较高的自由度,可实现不同场景、硬件条件下的算法适配,为优化旅客人脸识别的输入环节,提高各场景下的旅客人脸识别率提供了技术支撑。展开更多
针对照明变化条件下人脸图像检测精度相对较低的问题,以照明变化下的人脸检测为研究对象,提出局部自我相关函数(local autocorrelation,LAC),研究基于Adaboost算法下采用局部自我相关函数为前处理的光照变化下人脸检测。提出了局部自我...针对照明变化条件下人脸图像检测精度相对较低的问题,以照明变化下的人脸检测为研究对象,提出局部自我相关函数(local autocorrelation,LAC),研究基于Adaboost算法下采用局部自我相关函数为前处理的光照变化下人脸检测。提出了局部自我相关函数定义模型,对局部自我相关函数的物理特性进行分析,从理论上验证局部自我相关函数对线性照明变化的鲁棒性。采用卡内基梅隆大学的人脸照明变化数据库(CMU PIE Database)作为检测数据验证基于局部自我相关函数的光线照明变化下的人脸检测,实验结果证明了局部自我相关函数消除照明变化对人脸检测精度影响的有效性。展开更多
文摘基于深度学习的人脸识别技术以数据为驱动,对输入图像的质量要求较高。在铁路刷脸进/出站场景下,为滤除因各种因素导致的成像异常的人脸图像,提升人脸识别精度,文章研究人脸图像正常的特征分布,通过知识迁移,提出无须针对异常样本建模的人脸图像异常检测算法。理想情况下,该算法对人脸图像异常检测的ROC曲线下面积(AUROC,Aera Under Receiver Operating Characteristic)可达到0.979。实验结果表明,该算法在计算精度与运行成本的组合上具有较高的自由度,可实现不同场景、硬件条件下的算法适配,为优化旅客人脸识别的输入环节,提高各场景下的旅客人脸识别率提供了技术支撑。
文摘针对照明变化条件下人脸图像检测精度相对较低的问题,以照明变化下的人脸检测为研究对象,提出局部自我相关函数(local autocorrelation,LAC),研究基于Adaboost算法下采用局部自我相关函数为前处理的光照变化下人脸检测。提出了局部自我相关函数定义模型,对局部自我相关函数的物理特性进行分析,从理论上验证局部自我相关函数对线性照明变化的鲁棒性。采用卡内基梅隆大学的人脸照明变化数据库(CMU PIE Database)作为检测数据验证基于局部自我相关函数的光线照明变化下的人脸检测,实验结果证明了局部自我相关函数消除照明变化对人脸检测精度影响的有效性。