设 f(x)=a_kx^k+…+a_1x+a_0∈Z[x],a_k≠0,q∈N,(q,a_k,…,a_0)=1,定义指数和:S(f;q)=(?),其中 x 跑遍 mod q 的一个完全剩余系.1940年华罗庚证明了:对于任意实数ε>0均有|S(f;q)|≤c(ε,k)·q^(1-1/k+(?)),其中 c(ε,k)为仅依...设 f(x)=a_kx^k+…+a_1x+a_0∈Z[x],a_k≠0,q∈N,(q,a_k,…,a_0)=1,定义指数和:S(f;q)=(?),其中 x 跑遍 mod q 的一个完全剩余系.1940年华罗庚证明了:对于任意实数ε>0均有|S(f;q)|≤c(ε,k)·q^(1-1/k+(?)),其中 c(ε,k)为仅依赖于ε、k的正常数.展开更多
设 K 是 n 次代数数域.令Ψ(x,u,η)=(?)∧(b),其中 u~b mod η(?)α、β∈Z_k,α≡β(modη),α(?)0,β(?)0,(α,η)=(β,η)=1,(α)u=(β)b、h(η)表等价类 modη的类数,T(η)=(U∶U'),其中 U 表示域 K 中全体单位所成的群,U'={ε...设 K 是 n 次代数数域.令Ψ(x,u,η)=(?)∧(b),其中 u~b mod η(?)α、β∈Z_k,α≡β(modη),α(?)0,β(?)0,(α,η)=(β,η)=1,(α)u=(β)b、h(η)表等价类 modη的类数,T(η)=(U∶U'),其中 U 表示域 K 中全体单位所成的群,U'={ε|ε∈U,ε(?)0,ε≡1(modη}.我们证明了下述定理:对于任一正常数 A,存在一正常数 B=B(A)>0,当 Q=x^(1/(n+1))(log x)^(-B),x≥1时有sum from Nη≤Q(?)1/(T(η))|ψ(z,u,η)-z/(h(η))|(?)x/(log^Ax).展开更多
设F为域,F不含l次本原单位根,令■为 F 的秩为1的非平凡,非阿基米德赋值, r 为与其相对应的赋值环,p 为 r 的极大理想.本文讨论了 p 在 F 的根扩张 F(μ^(1/l))(μ∈r)中的分解形式与 p 在 F(ξ_l)(ξ_l 为 l 次本原单位根)中的任意扩...设F为域,F不含l次本原单位根,令■为 F 的秩为1的非平凡,非阿基米德赋值, r 为与其相对应的赋值环,p 为 r 的极大理想.本文讨论了 p 在 F 的根扩张 F(μ^(1/l))(μ∈r)中的分解形式与 p 在 F(ξ_l)(ξ_l 为 l 次本原单位根)中的任意扩张 p′在 F(μ^(1/l),ξ_l)中的分解形式的关系问题[定理1,2],并讨论了 F 关于 p 的剩余类域为有限域时,p'在F(μ^(1/l),ξ_l)中的分解问题[定理3]展开更多
文摘设 f(x)=a_kx^k+…+a_1x+a_0∈Z[x],a_k≠0,q∈N,(q,a_k,…,a_0)=1,定义指数和:S(f;q)=(?),其中 x 跑遍 mod q 的一个完全剩余系.1940年华罗庚证明了:对于任意实数ε>0均有|S(f;q)|≤c(ε,k)·q^(1-1/k+(?)),其中 c(ε,k)为仅依赖于ε、k的正常数.
文摘设 K 是 n 次代数数域.令Ψ(x,u,η)=(?)∧(b),其中 u~b mod η(?)α、β∈Z_k,α≡β(modη),α(?)0,β(?)0,(α,η)=(β,η)=1,(α)u=(β)b、h(η)表等价类 modη的类数,T(η)=(U∶U'),其中 U 表示域 K 中全体单位所成的群,U'={ε|ε∈U,ε(?)0,ε≡1(modη}.我们证明了下述定理:对于任一正常数 A,存在一正常数 B=B(A)>0,当 Q=x^(1/(n+1))(log x)^(-B),x≥1时有sum from Nη≤Q(?)1/(T(η))|ψ(z,u,η)-z/(h(η))|(?)x/(log^Ax).
文摘设F为域,F不含l次本原单位根,令■为 F 的秩为1的非平凡,非阿基米德赋值, r 为与其相对应的赋值环,p 为 r 的极大理想.本文讨论了 p 在 F 的根扩张 F(μ^(1/l))(μ∈r)中的分解形式与 p 在 F(ξ_l)(ξ_l 为 l 次本原单位根)中的任意扩张 p′在 F(μ^(1/l),ξ_l)中的分解形式的关系问题[定理1,2],并讨论了 F 关于 p 的剩余类域为有限域时,p'在F(μ^(1/l),ξ_l)中的分解问题[定理3]