A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiate...A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiated conducting crack growth. By applying such a power-law conducting crack growth rate expression to the evaluation of the life of solid dielectrics, the empirical classical ageing law of insulation materials can be derived theoretically as a lobical result. All the results are universal and agree with the experimental data of oxide films.展开更多
文摘A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiated conducting crack growth. By applying such a power-law conducting crack growth rate expression to the evaluation of the life of solid dielectrics, the empirical classical ageing law of insulation materials can be derived theoretically as a lobical result. All the results are universal and agree with the experimental data of oxide films.