A neural network control scheme with mixed H2/H∞performance was proposed for robot force/position control under parameter uncertainties and external disturbances. The mixed H2/H∞tracking performance ensures both rob...A neural network control scheme with mixed H2/H∞performance was proposed for robot force/position control under parameter uncertainties and external disturbances. The mixed H2/H∞tracking performance ensures both robust stability under a prescribed attenuation level for external disturbance and H2optimal tracking. The neural network was introduced to adaptively estimate nonlinear uncertainties, improving the system’s performance under parameter uncertainties as well as obtaining the H2/H∞tracking performance. The simulation shows that the control method performs better even when the system is under large modeling uncertainties and external disturbances.展开更多
This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model...This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model, a catenary model and a cable-force characteristics model, a basic method is presented based on preventing the pseudo-drag problem of a flexible cable and realizing the hybrid position/force control for a six-cable driven parallel manipulator, and a hybrid position/force control system is developed. Some specific experiments in two typical velocities for astronomical observations are carried out. Experimental results show that the tracking accuracy is related to the speed of the movement. The desired tracking accuracy of the support system is achieved through an effective hybrid position/force control strategy, the cable forces are controlled effectively, and the pseudo-drag problem of flexible cable is solved. This study establishes the foundation of achieving the harmonious movement of the six-cable driven parallel manipulator, A-B rotating platform and the Stewart fine tuninz olatform.展开更多
文摘A neural network control scheme with mixed H2/H∞performance was proposed for robot force/position control under parameter uncertainties and external disturbances. The mixed H2/H∞tracking performance ensures both robust stability under a prescribed attenuation level for external disturbance and H2optimal tracking. The neural network was introduced to adaptively estimate nonlinear uncertainties, improving the system’s performance under parameter uncertainties as well as obtaining the H2/H∞tracking performance. The simulation shows that the control method performs better even when the system is under large modeling uncertainties and external disturbances.
基金Supported by the National Basic Research Program of China ( No. 2007CB714007) , the National Natural Science Foundation of China ( No. 50975149) , and the Important National Science & Technology Specific Projects of China (No. 2009ZX04014-.035, 2009ZX04001-042-02).
文摘This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model, a catenary model and a cable-force characteristics model, a basic method is presented based on preventing the pseudo-drag problem of a flexible cable and realizing the hybrid position/force control for a six-cable driven parallel manipulator, and a hybrid position/force control system is developed. Some specific experiments in two typical velocities for astronomical observations are carried out. Experimental results show that the tracking accuracy is related to the speed of the movement. The desired tracking accuracy of the support system is achieved through an effective hybrid position/force control strategy, the cable forces are controlled effectively, and the pseudo-drag problem of flexible cable is solved. This study establishes the foundation of achieving the harmonious movement of the six-cable driven parallel manipulator, A-B rotating platform and the Stewart fine tuninz olatform.