侦察星座优化是天基信息体系建设的关键问题。为弥补以往研究大多只采用少量性能指标进行侦察星座优化的不足,提出了一种综合考虑5项性能指标的侦察星座优化模型。在解算优化模型过程中,为解决传统基于Pareto支配的进化算法出现的选择...侦察星座优化是天基信息体系建设的关键问题。为弥补以往研究大多只采用少量性能指标进行侦察星座优化的不足,提出了一种综合考虑5项性能指标的侦察星座优化模型。在解算优化模型过程中,为解决传统基于Pareto支配的进化算法出现的选择压力与多样性不足的问题,提出了TOPSIS-MOPSO(Technique for Order Preference by Similarity to an Ideal Solution-Multi-Objective Particle Swarm Optimization)算法,将多属性决策领域的TOPSIS引入进化算法中,并与SPD(Strengthened Pareto Dominate)相结合,得到一种能够同时增强种群收敛性与多样性的环境选择策略。提出了基于Harmonic距离的全局最优粒子选择策略,加快种群收敛速度,保护种群多样性;提出了自适应进化算子选择策略,帮助算法摆脱局部最优解。将TOPSIS-MOPSO算法应用在侦察星座优化问题上,并与MOPSO、DGEA、AR-MOEA 3种经典方法进行实验对比分析,实验结果显示,所提算法比其他3种算法在Δ*、IGD和HV上的最优指标值分别提升了19.76%、89.07%和28.2%。展开更多
文摘侦察星座优化是天基信息体系建设的关键问题。为弥补以往研究大多只采用少量性能指标进行侦察星座优化的不足,提出了一种综合考虑5项性能指标的侦察星座优化模型。在解算优化模型过程中,为解决传统基于Pareto支配的进化算法出现的选择压力与多样性不足的问题,提出了TOPSIS-MOPSO(Technique for Order Preference by Similarity to an Ideal Solution-Multi-Objective Particle Swarm Optimization)算法,将多属性决策领域的TOPSIS引入进化算法中,并与SPD(Strengthened Pareto Dominate)相结合,得到一种能够同时增强种群收敛性与多样性的环境选择策略。提出了基于Harmonic距离的全局最优粒子选择策略,加快种群收敛速度,保护种群多样性;提出了自适应进化算子选择策略,帮助算法摆脱局部最优解。将TOPSIS-MOPSO算法应用在侦察星座优化问题上,并与MOPSO、DGEA、AR-MOEA 3种经典方法进行实验对比分析,实验结果显示,所提算法比其他3种算法在Δ*、IGD和HV上的最优指标值分别提升了19.76%、89.07%和28.2%。