运用触点材料测试系统进行了AgSnO2电接触材料在低压直流条件下的电接触实验,研究了材料转移情况,分析了电弧侵蚀形貌和成分变化。结果表明:AgSnO2(12)的转移方向为阴极向阳极转移,阴、阳极材料转移速率均为初期较快后逐渐减缓。...运用触点材料测试系统进行了AgSnO2电接触材料在低压直流条件下的电接触实验,研究了材料转移情况,分析了电弧侵蚀形貌和成分变化。结果表明:AgSnO2(12)的转移方向为阴极向阳极转移,阴、阳极材料转移速率均为初期较快后逐渐减缓。阴、阳极表面可按电弧侵蚀形貌分成对应的三个圆环状区域:中心A区—电弧作用域,B区—电弧影响区,最外层区—电弧无明显影响区。阴极电弧作用区微观形貌主要为海绵状基体上分布着大小不一的孔洞,Sn 和 O 元素多偏聚在孔洞区域;阳极侵蚀区主要为熔融流动铺层或喷溅状态。展开更多
Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SE...Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SEM) and a 3D optical profiler(3DOP). The results indicated that 3DOP could supply clearer and more detailed arc erosion morphology information. Arc erosion resistance of Ag/SnO_2(10) electrical contact material was the best and that of Ag/CuO(10) was the worst. Arc erosion morphology of Ag/MeO(10) electrical contact materials mainly included three different types. Arc erosion morphologies of Ag/ZnO(10) and Ag/SnO_2(10) electrical contact materials were mainly liquid splash and evaporation, and those of Ag/CuO(10) and Ag/CdO(10) were mainly material transfer from anode to cathode. Arc erosion morphology of Ag/SnO_2(6)In_2O_3(4) electrical contact materials included both liquid splash, evaporation and material transfer. In addition, the formation process and mechanism on arc erosion morphology of Ag/MeO(10) electrical contact materials were discussed.展开更多
Effects of jet velocity,sand concentration and impingement angle on the surface roughness of Al-brass alloy were investigated after erosion and erosion?corrosion tests.The tests were performed using a jet impingement ...Effects of jet velocity,sand concentration and impingement angle on the surface roughness of Al-brass alloy were investigated after erosion and erosion?corrosion tests.The tests were performed using a jet impingement rig.The eroded surfaces were characterized using2-D and3-D surface profilometery and scanning electron microscopy(SEM).The results showed that there was an increase in the surface roughness of the erosion?corrosion samples as sand concentration was increased to1,5and10g/L at jet velocities of9,6and3m/s,respectively.However,the surface roughness decreased with a further increase in sand concentration.This decrease in the surface roughness was attributed to the higher work hardening of the surface,rebounding or blanketing effect and very high frequency of the impacts at the higher sand concentrations.The surface roughness increased as the jet velocity increased.The results also showed that the change in the surface roughness with impingement angle was not significant at two jet velocities of3and6m/s.However,at a higher jet velocity of9m/s,formation of ripples on the erosion surfaces at oblique angles resulted in a higher surface roughness as compared with the normal impingement angle.展开更多
A new approach which adopted the idea of coupling bionics to improve erosion resistance was presented, by taking the desert scorpion as the research object. The anti-erosion characteristic rules and mechanism of deser...A new approach which adopted the idea of coupling bionics to improve erosion resistance was presented, by taking the desert scorpion as the research object. The anti-erosion characteristic rules and mechanism of desert scorpion's surface under the dynamics effect of gas/solid mixed media were researched, especially the comprehensive influence mechanism of surface morphology, microstructure, creature flexibility and many other factors was studied. Simulation by CFD software was applied to predict the relative erosion severity. Samples with the coupled bionic configurations and flexibility were produced. Experiment optimum design theory was employed to design experiment scheme. Silica sand of particle size of 105-830 ~tm was used as the erodent. The erosion tests were carried out to validate the simulation results obtained. It is shown that the predicted results are in agreement with those obtained from the experiment. And contrast tests were carried out at the best and worst test points of erosion resistance for four samples. Contrast tests show that the erosion resistance trend occurs in such order with the best erosion resistance as coupling sample, groove, smooth and flexibility, and smooth, and the increasing rate of erosion resistances in sequence of 12.08%, 8.87%, 6.03% in the best test point. But in the poorest point, the increasing rate of erosion resistance is in sequence of 15.64%, 9.53%, 6.59%. The morphologies of eroded surface were examined by the scanning electron microscope, and the possible wear mechanism was discussed.展开更多
The microscopic morphology and pore structure characteristics of concrete with composite admixtures(fly ash and mineral powder) after chlorine salt erosion were analyzed via scanning electron microscopy(SEM) and mercu...The microscopic morphology and pore structure characteristics of concrete with composite admixtures(fly ash and mineral powder) after chlorine salt erosion were analyzed via scanning electron microscopy(SEM) and mercury injection porosimetry(MIP), providing the basis for the design and maintenance of concrete shafts in coal mines. The above-mentioned characteristics were compared with the macroscopic characteristic of concrete fractures under uniaxial compression. The results show that the macroscopic fracture characteristics of concrete under uniaxial compression change from longitudinal split fracture and oblique section shear fracture to conjugate cant fracture, and the degree of breakage increases.Interface cracks, cement paste cracks, spherical surface cracks, and aggregate cracks appear in concrete under uniaxial compression. In the early stages of corrosion, the original cracks which are obvious are repaired. When the corrosion becomes more serious, cement paste cracks appear, and the number of harmful holes increases while the number of harmless holes decreases. This study also reveals the relationship between the macroscopic properties and microscopic structure of concrete under chloride salt erosion. Finally, the paper preliminarily discussed the relationship between the macroscopic properties and mesoscopic characteristics of concrete under chlorine salt erosion.展开更多
The glacial trough is a common glacier erosion landscape, which plays an important role in the study of glacier erosion processes. In a sharp contrast with the developing river, which is generally meandering, the deve...The glacial trough is a common glacier erosion landscape, which plays an important role in the study of glacier erosion processes. In a sharp contrast with the developing river, which is generally meandering, the developing glacial trough is usually wide and straight. Is the straightness of the glacial trough just the special phenomenon of some areas or a universal feature? What controls the straightness of the glacial trough? Until now, these issues have not been studied yet. In this paper, we conduct systematic numerical models of the glacier erosion and simulate the erosion evolution process of the glacial trough. Numerical simulations show that:(1) while the meandering glacier is eroding deeper to form the U-shaped cross section, the glacier is eroding laterally. The erosion rate of the ice-facing slope is bigger than that of the back-slope.(2) The smaller(bigger) the slope is, the smaller(bigger) the glacier erosion intensity is.(3) The smaller(bigger) the ice discharge is, the smaller(bigger) the glacier erosion intensity is. In the glacier erosion process, the erosion rate of the ice-facing slope is always greater than that of the back-slope. Therefore, the glacial trough always develops into more straight form. This paper comes to the conclusion that the shape evolution of the glacial trough is controlled mainly by the erosion mechanism of the glacier. Thereby, the glacial trough prefers straight geometry.展开更多
文摘运用触点材料测试系统进行了AgSnO2电接触材料在低压直流条件下的电接触实验,研究了材料转移情况,分析了电弧侵蚀形貌和成分变化。结果表明:AgSnO2(12)的转移方向为阴极向阳极转移,阴、阳极材料转移速率均为初期较快后逐渐减缓。阴、阳极表面可按电弧侵蚀形貌分成对应的三个圆环状区域:中心A区—电弧作用域,B区—电弧影响区,最外层区—电弧无明显影响区。阴极电弧作用区微观形貌主要为海绵状基体上分布着大小不一的孔洞,Sn 和 O 元素多偏聚在孔洞区域;阳极侵蚀区主要为熔融流动铺层或喷溅状态。
基金Project(2012QNZT003)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2012M521542)supported by the Postdoctoral Science Foundation of China+1 种基金Project(14JJ3014)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(BSh1202)supported by the Zhejiang Provincial Postdoctoral Scientific Research Foundation of China
文摘Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SEM) and a 3D optical profiler(3DOP). The results indicated that 3DOP could supply clearer and more detailed arc erosion morphology information. Arc erosion resistance of Ag/SnO_2(10) electrical contact material was the best and that of Ag/CuO(10) was the worst. Arc erosion morphology of Ag/MeO(10) electrical contact materials mainly included three different types. Arc erosion morphologies of Ag/ZnO(10) and Ag/SnO_2(10) electrical contact materials were mainly liquid splash and evaporation, and those of Ag/CuO(10) and Ag/CdO(10) were mainly material transfer from anode to cathode. Arc erosion morphology of Ag/SnO_2(6)In_2O_3(4) electrical contact materials included both liquid splash, evaporation and material transfer. In addition, the formation process and mechanism on arc erosion morphology of Ag/MeO(10) electrical contact materials were discussed.
文摘Effects of jet velocity,sand concentration and impingement angle on the surface roughness of Al-brass alloy were investigated after erosion and erosion?corrosion tests.The tests were performed using a jet impingement rig.The eroded surfaces were characterized using2-D and3-D surface profilometery and scanning electron microscopy(SEM).The results showed that there was an increase in the surface roughness of the erosion?corrosion samples as sand concentration was increased to1,5and10g/L at jet velocities of9,6and3m/s,respectively.However,the surface roughness decreased with a further increase in sand concentration.This decrease in the surface roughness was attributed to the higher work hardening of the surface,rebounding or blanketing effect and very high frequency of the impacts at the higher sand concentrations.The surface roughness increased as the jet velocity increased.The results also showed that the change in the surface roughness with impingement angle was not significant at two jet velocities of3and6m/s.However,at a higher jet velocity of9m/s,formation of ripples on the erosion surfaces at oblique angles resulted in a higher surface roughness as compared with the normal impingement angle.
基金Projects(51205161, 51175220, 51290292) supported by the National Natural Science Foundation of ChinaProjects(20120061120051, 20100061110023) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China+3 种基金Project(OSR-04-04) supported by Cooperation and Innovation to National Potential Oil and Gas for Production and Research, ChinaProject(200905016) supported by Ten Outstanding Youth Fund Project of Jilin University, ChinaProject(2012M511345) supported by China Postdoctoral Science FoundationProject(450060481176) supported by Basic Scientific Research Expenses of Jilin University, China
文摘A new approach which adopted the idea of coupling bionics to improve erosion resistance was presented, by taking the desert scorpion as the research object. The anti-erosion characteristic rules and mechanism of desert scorpion's surface under the dynamics effect of gas/solid mixed media were researched, especially the comprehensive influence mechanism of surface morphology, microstructure, creature flexibility and many other factors was studied. Simulation by CFD software was applied to predict the relative erosion severity. Samples with the coupled bionic configurations and flexibility were produced. Experiment optimum design theory was employed to design experiment scheme. Silica sand of particle size of 105-830 ~tm was used as the erodent. The erosion tests were carried out to validate the simulation results obtained. It is shown that the predicted results are in agreement with those obtained from the experiment. And contrast tests were carried out at the best and worst test points of erosion resistance for four samples. Contrast tests show that the erosion resistance trend occurs in such order with the best erosion resistance as coupling sample, groove, smooth and flexibility, and smooth, and the increasing rate of erosion resistances in sequence of 12.08%, 8.87%, 6.03% in the best test point. But in the poorest point, the increasing rate of erosion resistance is in sequence of 15.64%, 9.53%, 6.59%. The morphologies of eroded surface were examined by the scanning electron microscope, and the possible wear mechanism was discussed.
基金The authors gratefully acknowledge the financial support for this work,provided by the Outstanding Youth Science Foundation of China(No.51322401)the Key Project of Chinese National Programs for Fundamental Research and Development of China(No.2015CB251601)+1 种基金the Science and Technology Project of the Chinese Ministry of Housing and Urban-Rural Construction of China(Nos.2013-K4-22 and 2014-K4-042)the General Program of Chinese National Building Materials Industry Technology Innovation Program of China(Nos.2014-M5-1 and 2014-M5-2)
文摘The microscopic morphology and pore structure characteristics of concrete with composite admixtures(fly ash and mineral powder) after chlorine salt erosion were analyzed via scanning electron microscopy(SEM) and mercury injection porosimetry(MIP), providing the basis for the design and maintenance of concrete shafts in coal mines. The above-mentioned characteristics were compared with the macroscopic characteristic of concrete fractures under uniaxial compression. The results show that the macroscopic fracture characteristics of concrete under uniaxial compression change from longitudinal split fracture and oblique section shear fracture to conjugate cant fracture, and the degree of breakage increases.Interface cracks, cement paste cracks, spherical surface cracks, and aggregate cracks appear in concrete under uniaxial compression. In the early stages of corrosion, the original cracks which are obvious are repaired. When the corrosion becomes more serious, cement paste cracks appear, and the number of harmful holes increases while the number of harmless holes decreases. This study also reveals the relationship between the macroscopic properties and microscopic structure of concrete under chloride salt erosion. Finally, the paper preliminarily discussed the relationship between the macroscopic properties and mesoscopic characteristics of concrete under chlorine salt erosion.
基金supported by the National Natural Science Foundation of China(Grant No.41174067)
文摘The glacial trough is a common glacier erosion landscape, which plays an important role in the study of glacier erosion processes. In a sharp contrast with the developing river, which is generally meandering, the developing glacial trough is usually wide and straight. Is the straightness of the glacial trough just the special phenomenon of some areas or a universal feature? What controls the straightness of the glacial trough? Until now, these issues have not been studied yet. In this paper, we conduct systematic numerical models of the glacier erosion and simulate the erosion evolution process of the glacial trough. Numerical simulations show that:(1) while the meandering glacier is eroding deeper to form the U-shaped cross section, the glacier is eroding laterally. The erosion rate of the ice-facing slope is bigger than that of the back-slope.(2) The smaller(bigger) the slope is, the smaller(bigger) the glacier erosion intensity is.(3) The smaller(bigger) the ice discharge is, the smaller(bigger) the glacier erosion intensity is. In the glacier erosion process, the erosion rate of the ice-facing slope is always greater than that of the back-slope. Therefore, the glacial trough always develops into more straight form. This paper comes to the conclusion that the shape evolution of the glacial trough is controlled mainly by the erosion mechanism of the glacier. Thereby, the glacial trough prefers straight geometry.