期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进矩阵分解与卷积神经网络结合的推荐模型
被引量:
10
1
作者
蔡念
刘广聪
蔡红丹
《计算机工程与应用》
CSCD
北大核心
2019年第19期178-184,共7页
针对推荐系统评分数据稀疏和评价信息爆增等问题进行模型研究和改进。在传统矩阵分解模型基础上加入了用户和项目的影响因子,提高预测模型的泛化能力;建立跨通道卷积神经网络对用户评价信息进行识别,将改进的矩阵分解模型与改进卷积神...
针对推荐系统评分数据稀疏和评价信息爆增等问题进行模型研究和改进。在传统矩阵分解模型基础上加入了用户和项目的影响因子,提高预测模型的泛化能力;建立跨通道卷积神经网络对用户评价信息进行识别,将改进的矩阵分解模型与改进卷积神经网络进行结合,提出一种改进矩阵分解与跨通道卷积神经网络结合的推荐模型,提高预测模型的准确度。实验结果表明,该模型预测性能相对于PMF、CTR和CDL在三个数据集上的最优性能分别提升2.96%、10.27%和1.77%,相对于MF&CNN性能分别提升0.29%、2.98%和0.08%;当数据密度从20%增至80%时,模型预测性能会进一步提升。
展开更多
关键词
推荐系统
信息爆增
矩阵分解
卷积神经网络
下载PDF
职称材料
题名
改进矩阵分解与卷积神经网络结合的推荐模型
被引量:
10
1
作者
蔡念
刘广聪
蔡红丹
机构
广东工业大学计算机学院
三峡大学计算机学院
出处
《计算机工程与应用》
CSCD
北大核心
2019年第19期178-184,共7页
基金
广州市科技计划项目(No.201508020030)
文摘
针对推荐系统评分数据稀疏和评价信息爆增等问题进行模型研究和改进。在传统矩阵分解模型基础上加入了用户和项目的影响因子,提高预测模型的泛化能力;建立跨通道卷积神经网络对用户评价信息进行识别,将改进的矩阵分解模型与改进卷积神经网络进行结合,提出一种改进矩阵分解与跨通道卷积神经网络结合的推荐模型,提高预测模型的准确度。实验结果表明,该模型预测性能相对于PMF、CTR和CDL在三个数据集上的最优性能分别提升2.96%、10.27%和1.77%,相对于MF&CNN性能分别提升0.29%、2.98%和0.08%;当数据密度从20%增至80%时,模型预测性能会进一步提升。
关键词
推荐系统
信息爆增
矩阵分解
卷积神经网络
Keywords
recommended system
Information explosion
matrix factorization
convolution neural network
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进矩阵分解与卷积神经网络结合的推荐模型
蔡念
刘广聪
蔡红丹
《计算机工程与应用》
CSCD
北大核心
2019
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部