Functional polymeric materials with electrical bi-stable states possess significant potential for high-density data storage due to their nanoscale memory site,threedimensional-stacking ability and intrinsic flexibilit...Functional polymeric materials with electrical bi-stable states possess significant potential for high-density data storage due to their nanoscale memory site,threedimensional-stacking ability and intrinsic flexibility.Aromatic polyimides bearing donor-acceptor(D-A)skeleton could form the charge transfer complex(CTC)under an electrical field,leading to their feasibility as memory materials.Three novel porphyrinated polyimides DATPP-DSDA,Zn-DATPP-DSDA and Mn-DATPP-DSDA were designed and synthesized for information memory applications.Metal ions with different electron configurations at 3 d orbital have a determining influence on memory behaviors of polyimides:nonvolatile write-once-read-many-times memory(WORM)for DATPP-DSDA,volatile static random access memory(SRAM)for Zn-DATPP-DSDA,but no memory performance for Mn-DATPP-DSDA.By comparing the contribution of orbital transition and hole-electron distribution of chargetransfer excited states,roles of metal ions in regulating memory types were discussed.Molecular simulation results indicate that the Zn ion could play a bridge role in paving the route for excited electrons from a D to an A,while a trap role for the Mn ion in hindering this process.This study proves the feasibility of the strategy for modulating the memory behaviors of porphyrinated polyimides by varying the central metal ion and provides the exact effects of various metal ions on regulating charge transfer processes.展开更多
As the application of orbital angular momentum(OAM) of photon quantum in quantum communication, the OAM photon quantum interface for the transmission wavelength from the telecom communication quantum information stora...As the application of orbital angular momentum(OAM) of photon quantum in quantum communication, the OAM photon quantum interface for the transmission wavelength from the telecom communication quantum information storage in visible regime is required. Here we demonstrate the efficiency enhancement for the OAM photon quantum interface based on the frequency upconversion from telecom wavelength to visible regime by sum-frequency generation. The infrared photons at 1 558 nm carrying different OAM values could be converted to the visible regime at 622.2 nm with the optimal efficiency via adjusting the pump beam waist radius and intensity.展开更多
基金sincerely appreciate the financial support from the National Natural Science Foundation of China(51673017 and 62004138)Beijing National Laboratory for Molecular Sciences(BNLMS202006)+2 种基金the Fundamental Research Funds for the Central Universities(XK1802-2)the National Key Basic Research Program of China(973 program,2014CB643604)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(BK20140006)。
文摘Functional polymeric materials with electrical bi-stable states possess significant potential for high-density data storage due to their nanoscale memory site,threedimensional-stacking ability and intrinsic flexibility.Aromatic polyimides bearing donor-acceptor(D-A)skeleton could form the charge transfer complex(CTC)under an electrical field,leading to their feasibility as memory materials.Three novel porphyrinated polyimides DATPP-DSDA,Zn-DATPP-DSDA and Mn-DATPP-DSDA were designed and synthesized for information memory applications.Metal ions with different electron configurations at 3 d orbital have a determining influence on memory behaviors of polyimides:nonvolatile write-once-read-many-times memory(WORM)for DATPP-DSDA,volatile static random access memory(SRAM)for Zn-DATPP-DSDA,but no memory performance for Mn-DATPP-DSDA.By comparing the contribution of orbital transition and hole-electron distribution of chargetransfer excited states,roles of metal ions in regulating memory types were discussed.Molecular simulation results indicate that the Zn ion could play a bridge role in paving the route for excited electrons from a D to an A,while a trap role for the Mn ion in hindering this process.This study proves the feasibility of the strategy for modulating the memory behaviors of porphyrinated polyimides by varying the central metal ion and provides the exact effects of various metal ions on regulating charge transfer processes.
基金supported by the National Natural Science Foundation of China(Nos.61378033 and 91021014)the Shuguang Program(No.15SG22)by Shanghai Education Development Foundation and Shanghai Municipal Education Commissionthe Open Project of State Key Laboratory of Precision Spectroscopy
文摘As the application of orbital angular momentum(OAM) of photon quantum in quantum communication, the OAM photon quantum interface for the transmission wavelength from the telecom communication quantum information storage in visible regime is required. Here we demonstrate the efficiency enhancement for the OAM photon quantum interface based on the frequency upconversion from telecom wavelength to visible regime by sum-frequency generation. The infrared photons at 1 558 nm carrying different OAM values could be converted to the visible regime at 622.2 nm with the optimal efficiency via adjusting the pump beam waist radius and intensity.