When shovels load the dump trucks with over 100-ton passes under gravity dumping conditions, they will create a large impact force on the dump truck body which generates high frequency shock waves which expose the ope...When shovels load the dump trucks with over 100-ton passes under gravity dumping conditions, they will create a large impact force on the dump truck body which generates high frequency shock waves which expose the operators to whole body vibrations (WBV). The main cause of such truck vibrations is the large impact force due to the gravity dumping of large tonnage passes. Therefore a rigorous mathematical model has been developed for the impact force containing all the necessary factors upon which it depends. Latter, a thorough analysis shows that percentage reduction of 7.19%, 9.40%, 13.27%, 14.8%, 17.30% and 18.13% can he achieved by reducing the dumping distance to 6.33 m, 6.0 m, 5.5 m, 5.33 m, 5.0 m and 4.9 m, respectively, as compared to when the dumping distance was 7.33 m. Even more reduction in the magnitude of impact force can he observed if the shovel pass gets divided into more than two sub-passes. Therefore, these models can he used to figure out the number of sub-passes into which a single ore pass can he divided and/or the extent to which the dumping distance can he reduced which would reduce the impact force significantly enough to obtain safer yet economic operations.展开更多
We present a stochastic critical slope sandpile model, where the amount of grains that fall in an overturning event is stochastic variable. The model is local, conservative, and Abelian. We apply the moment analysis t...We present a stochastic critical slope sandpile model, where the amount of grains that fall in an overturning event is stochastic variable. The model is local, conservative, and Abelian. We apply the moment analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. Numerical results show that this model, Oslo model, and one-dimensional Abelian Manna model have the same critical behavior although the three models have different stochastic toppling rules, which provides evidences suggesting that Abelian sandpile models with different stochastic toppling rules are in the same universality class.展开更多
This paper presents series studies on the toppling mechanism by centrifuge tests and numerical simulations. Two different discrete element methods, i.e., the continuum-based discrete element method(CDEM) and the disco...This paper presents series studies on the toppling mechanism by centrifuge tests and numerical simulations. Two different discrete element methods, i.e., the continuum-based discrete element method(CDEM) and the discontinuous deformation analysis(DDA), are adopted. The modeling results show that both the methods can accurately capture the failure modes of the centrifuge tests, including three distinct zones and two failure surfaces. Comparisons are made between the physical test and numerical simulation results. The critical inclination angle of the tilting table where the slope models are fixed on can be moderately predicted by the two methods, with different degrees of precision. The error between the test results and the simulated results is within 1% for the slope models without rock-bridges by both CDEM and DDA. However, it is amplified for the staggered-joint models that simulate the rock-bridges. With DDA, the average error is about 5%, and the maximum error is up to 17%. While with CDEM, the errors for the aligned-joint models are ranged from 1% to 6%, and it is from 10% to 29% for the staggered-joint models. The two numerical methods show the capability in simulating toppling failure of blocky rock mass with and without rock-bridges. The model with rock-bridges which provides a certain bending resistance is more stable than the one without any rock-bridge. In addition, the two failure surfaces were observed, which is different from the common understanding that only one failure surface appears.展开更多
文摘When shovels load the dump trucks with over 100-ton passes under gravity dumping conditions, they will create a large impact force on the dump truck body which generates high frequency shock waves which expose the operators to whole body vibrations (WBV). The main cause of such truck vibrations is the large impact force due to the gravity dumping of large tonnage passes. Therefore a rigorous mathematical model has been developed for the impact force containing all the necessary factors upon which it depends. Latter, a thorough analysis shows that percentage reduction of 7.19%, 9.40%, 13.27%, 14.8%, 17.30% and 18.13% can he achieved by reducing the dumping distance to 6.33 m, 6.0 m, 5.5 m, 5.33 m, 5.0 m and 4.9 m, respectively, as compared to when the dumping distance was 7.33 m. Even more reduction in the magnitude of impact force can he observed if the shovel pass gets divided into more than two sub-passes. Therefore, these models can he used to figure out the number of sub-passes into which a single ore pass can he divided and/or the extent to which the dumping distance can he reduced which would reduce the impact force significantly enough to obtain safer yet economic operations.
基金国家自然科学基金,the State Key Laboratory of Laser of China
文摘We present a stochastic critical slope sandpile model, where the amount of grains that fall in an overturning event is stochastic variable. The model is local, conservative, and Abelian. We apply the moment analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. Numerical results show that this model, Oslo model, and one-dimensional Abelian Manna model have the same critical behavior although the three models have different stochastic toppling rules, which provides evidences suggesting that Abelian sandpile models with different stochastic toppling rules are in the same universality class.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB047006)
文摘This paper presents series studies on the toppling mechanism by centrifuge tests and numerical simulations. Two different discrete element methods, i.e., the continuum-based discrete element method(CDEM) and the discontinuous deformation analysis(DDA), are adopted. The modeling results show that both the methods can accurately capture the failure modes of the centrifuge tests, including three distinct zones and two failure surfaces. Comparisons are made between the physical test and numerical simulation results. The critical inclination angle of the tilting table where the slope models are fixed on can be moderately predicted by the two methods, with different degrees of precision. The error between the test results and the simulated results is within 1% for the slope models without rock-bridges by both CDEM and DDA. However, it is amplified for the staggered-joint models that simulate the rock-bridges. With DDA, the average error is about 5%, and the maximum error is up to 17%. While with CDEM, the errors for the aligned-joint models are ranged from 1% to 6%, and it is from 10% to 29% for the staggered-joint models. The two numerical methods show the capability in simulating toppling failure of blocky rock mass with and without rock-bridges. The model with rock-bridges which provides a certain bending resistance is more stable than the one without any rock-bridge. In addition, the two failure surfaces were observed, which is different from the common understanding that only one failure surface appears.