In the seemingly unrelated regression systems, the existing quasi-likelihood is always involved in the difficult problem of calculating inverse of a high order matrix specially for large systems. To avoid this problem...In the seemingly unrelated regression systems, the existing quasi-likelihood is always involved in the difficult problem of calculating inverse of a high order matrix specially for large systems. To avoid this problem, the new quasi-likelihood proposed in this paper is based mainly on a linearly iterative process of some unbiased estimating functions.Some finite sample properties and asymptotic behaviours for this new quasi-likelihood are investigated. These results show that the new quasi-likelihood for parameter of interest is E-sufficient, iteratively efficient and approximately efficient. Some examples are given to illustrate the theoretical results.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10371059, No.10171051).
文摘In the seemingly unrelated regression systems, the existing quasi-likelihood is always involved in the difficult problem of calculating inverse of a high order matrix specially for large systems. To avoid this problem, the new quasi-likelihood proposed in this paper is based mainly on a linearly iterative process of some unbiased estimating functions.Some finite sample properties and asymptotic behaviours for this new quasi-likelihood are investigated. These results show that the new quasi-likelihood for parameter of interest is E-sufficient, iteratively efficient and approximately efficient. Some examples are given to illustrate the theoretical results.