期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
二连通二部图的偶泛圈性 被引量:1
1
作者 马美杰 戴珍香 《烟台大学学报(自然科学与工程版)》 CAS 2003年第4期239-243,共5页
范更华证明了如下结论:设G是具有n个点的二连通图(n≥3),若对任一对使d(u,v)=2的点有max{d(u),v(v)}≥π/2,则G是哈密顿圈的。将范氏条件限制在二部图上,已经得到二连通的二部图是哈密顿圈的一个类似充分条件。本文证明该充分条件亦保... 范更华证明了如下结论:设G是具有n个点的二连通图(n≥3),若对任一对使d(u,v)=2的点有max{d(u),v(v)}≥π/2,则G是哈密顿圈的。将范氏条件限制在二部图上,已经得到二连通的二部图是哈密顿圈的一个类似充分条件。本文证明该充分条件亦保证了二部图的偶泛圈性:设二连通的平衡二部图G=(X,Y;E)每部有n个点,若对任一对使d(U,v)=2的点有max{d(u),d(v)}>π/2,则G为偶泛圈的。该结果是最好的可能。 展开更多
关键词 二部图 点度 二连通图 哈密顿 哈密顿 偶泛圈性
下载PDF
完全二部有向图的迭代线图的泛偶圈性(英文)
2
作者 蔡慧萍 钱凌志 《石河子大学学报(自然科学版)》 CAS 2014年第4期525-528,共4页
泛圈性是网络拓扑结构(图或有向图)的一个重要拓扑性质,也是度量网络性能优劣的一个重要指标。LCBD(d,n)是一类稠密的二部有向图,它是完全二部有向图K_(d,d)的(n-1)重迭代线图。本文研究了LCBD(d,n)的泛偶圈性,通过LCBD(d,n-1)的Euler... 泛圈性是网络拓扑结构(图或有向图)的一个重要拓扑性质,也是度量网络性能优劣的一个重要指标。LCBD(d,n)是一类稠密的二部有向图,它是完全二部有向图K_(d,d)的(n-1)重迭代线图。本文研究了LCBD(d,n)的泛偶圈性,通过LCBD(d,n-1)的Euler回构造了一个2d^n位的序列,证明了LCBD(d,n)是泛偶圈的,并且当n是偶数时,LCBD(d,n)是点n泛偶圈的,当n是奇数时,是点(n+1)泛偶圈的。 展开更多
关键词 完全二部有向图 迭代线图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部