为了准确地获得信号中谐波、间谐波成分的频率和幅值等参数,提出了一种新的检测算法,即ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)。此算法是一种基于子空间技术的高分辨率检测方法,它把信号分解...为了准确地获得信号中谐波、间谐波成分的频率和幅值等参数,提出了一种新的检测算法,即ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)。此算法是一种基于子空间技术的高分辨率检测方法,它把信号分解为信号子空间和噪声子空间,能够精确地估计出被噪声污染的正弦信号的频率,幅值等信息,克服了传统FFT算法分辨率的限制。仿真结果表明此算法能够在较短的信号长度内准确检测出信号各个谐波和间谐波成分,证明了此算法的正确性。展开更多
The pyrolysis mechanism of rice straw (RS) was investigated using a tube reactor with Fourier trans-form infrared (FTIR) spectroscopy and thermogravimetric analyzer. The results show that the maximum pyrolysis rate in...The pyrolysis mechanism of rice straw (RS) was investigated using a tube reactor with Fourier trans-form infrared (FTIR) spectroscopy and thermogravimetric analyzer. The results show that the maximum pyrolysis rate increases with increasing heating rate and the corresponding temperature also increases. The three-pseudocomponent model could describe the pyrolysis behavior of rice straw accurately. The main pyrolysis gas products are H2O, CO2, CO, CH4, HCHO (formaldehyde), HCOOH (formic acid), CH3OH (methanol), C6H5OH (phenol), etc. The releasing of H2O, CO2, CO and CH4 mainly focuses at 220-400°C. The H2O formation process is separated into two stages corresponding to the evaporation of free water and the formation of primary volatiles. The release of CO2 first increases with increasing temperature and gets the maximum at 309°C. The releasing behavior of CO is similar to H2O and CO2 between 200 and 400°C. The production of CH4 happens, compared to CO2 and CO, at higher temperatures of 275-400°C with the maximum at 309°C. When the temperature exceeds 200°C, hy-droxyl and aliphatic C H groups decrease significantly, while C O, olefinic C C bonds and ether structures in-crease first in the chars and then the aromatic structure develops with rising temperature. Above 500°C, the material becomes increasingly more aromatic and the ether groups decreases with an increase of temperature. The aromati-zation process starts at ≈350°C and continues to higher temperatures.展开更多
文摘为了准确地获得信号中谐波、间谐波成分的频率和幅值等参数,提出了一种新的检测算法,即ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)。此算法是一种基于子空间技术的高分辨率检测方法,它把信号分解为信号子空间和噪声子空间,能够精确地估计出被噪声污染的正弦信号的频率,幅值等信息,克服了传统FFT算法分辨率的限制。仿真结果表明此算法能够在较短的信号长度内准确检测出信号各个谐波和间谐波成分,证明了此算法的正确性。
基金Supported by the Special Funds for Major State Basic Research Projects of China (2004CB217704)the National NaturalScience Foundation of China (50721005)
文摘The pyrolysis mechanism of rice straw (RS) was investigated using a tube reactor with Fourier trans-form infrared (FTIR) spectroscopy and thermogravimetric analyzer. The results show that the maximum pyrolysis rate increases with increasing heating rate and the corresponding temperature also increases. The three-pseudocomponent model could describe the pyrolysis behavior of rice straw accurately. The main pyrolysis gas products are H2O, CO2, CO, CH4, HCHO (formaldehyde), HCOOH (formic acid), CH3OH (methanol), C6H5OH (phenol), etc. The releasing of H2O, CO2, CO and CH4 mainly focuses at 220-400°C. The H2O formation process is separated into two stages corresponding to the evaporation of free water and the formation of primary volatiles. The release of CO2 first increases with increasing temperature and gets the maximum at 309°C. The releasing behavior of CO is similar to H2O and CO2 between 200 and 400°C. The production of CH4 happens, compared to CO2 and CO, at higher temperatures of 275-400°C with the maximum at 309°C. When the temperature exceeds 200°C, hy-droxyl and aliphatic C H groups decrease significantly, while C O, olefinic C C bonds and ether structures in-crease first in the chars and then the aromatic structure develops with rising temperature. Above 500°C, the material becomes increasingly more aromatic and the ether groups decreases with an increase of temperature. The aromati-zation process starts at ≈350°C and continues to higher temperatures.