微电网中复合储能的功率分配问题一直是业内研究的热点,以光伏微电网为应用场景,电源功率波动和负载功率波动在时间上呈现出的非线性特性会对储能系统控制产生影响。针对这一问题,在基于源-荷功率预测的复合储能控制策略上进行优化,利...微电网中复合储能的功率分配问题一直是业内研究的热点,以光伏微电网为应用场景,电源功率波动和负载功率波动在时间上呈现出的非线性特性会对储能系统控制产生影响。针对这一问题,在基于源-荷功率预测的复合储能控制策略上进行优化,利用模糊算法对非线性问题的处理优势,在储能元件功率分配的情况中加入模糊控制器,兼顾考虑储能电池SOC(State of Charge)与微电网功率波动之间的非线性关系,设计微电网预测能量与实际并网能量的差额分配算法,对储能系统有功率参考值进行实时修正,从而达到调节储能系统SOC的效果。实现了在长时间尺度中,实际并网功率能准确跟踪并网调度,储能元件不会产生过充或过放的现象,从而降低了储能元件的损坏率,提高了复合储能系统运行的安全稳定性能,延长了储能系统使用寿命的目的。实验结果表明:与优化前的控制策略相比,在相同工况下优化后的控制策略使蓄电池SOC波动范围缩小15.6%,一直保持在40%~60%之间波动。展开更多
文摘微电网中复合储能的功率分配问题一直是业内研究的热点,以光伏微电网为应用场景,电源功率波动和负载功率波动在时间上呈现出的非线性特性会对储能系统控制产生影响。针对这一问题,在基于源-荷功率预测的复合储能控制策略上进行优化,利用模糊算法对非线性问题的处理优势,在储能元件功率分配的情况中加入模糊控制器,兼顾考虑储能电池SOC(State of Charge)与微电网功率波动之间的非线性关系,设计微电网预测能量与实际并网能量的差额分配算法,对储能系统有功率参考值进行实时修正,从而达到调节储能系统SOC的效果。实现了在长时间尺度中,实际并网功率能准确跟踪并网调度,储能元件不会产生过充或过放的现象,从而降低了储能元件的损坏率,提高了复合储能系统运行的安全稳定性能,延长了储能系统使用寿命的目的。实验结果表明:与优化前的控制策略相比,在相同工况下优化后的控制策略使蓄电池SOC波动范围缩小15.6%,一直保持在40%~60%之间波动。