Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused incr...Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused increases both in ATP content in leaves and the millisecond_delayed light emission of leaves. The increase in net photosynthetic rate caused by NaHSO 3 treatment was similar to that by PMS (phenazine methosulfate) treatment. The grain yield of treated rice was enhanced approximately by 10% after duplicated application of NaHSO 3 in milk_ripening stage. It is suggested that the enhancement of photosynthesis by NaHSO 3 treatment resulted from the effect of increasing ATP supplement. Concomitant with an increase in the photosynthetic rate and ATP content in leaves, the transient increase in chlorophyll fluorescence after the termination of actinic light, which could be used as an index of the cyclic electron flow, was also enhanced by low concentration of NaHSO 3 treatment. Basing on these results it is proposed that the increase in rice photosynthesis caused by low concentrations of NaHSO 3 could be due to the stimulation of the cyclic electron flow around PSⅠ which in turn the enhancement of the coupled photophosphorylation and photosynthesis.展开更多
Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resol...Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties.展开更多
By utilizing optical Schlieren method, the Rayleigh Bénard Marangoni convection in mass transfer process was observed. A recorder and a camera separately recorded dynamic and static convective flow patterns dur...By utilizing optical Schlieren method, the Rayleigh Bénard Marangoni convection in mass transfer process was observed. A recorder and a camera separately recorded dynamic and static convective flow patterns during experiments . Different organic solvents were selected to investigate the RBM effects induced by different driving mechanisms including density gradient, surface tension gradient and their combination. Thermal effects produced by solvents evaporation and solute absorption/desorption are thought as an important factor in the creation of RBM convection during the mass transfer process. Qualitative analysis of experimental results is presented on the basis of photos and videotapes that were taken as direct visual evidences. Experimental results show that the thermal effect accompanying the mass transfer can be a cause at the onset of RBM convection and can′t be neglected simply in study of RBM effect driven by mass transfer.展开更多
Ultrafast time_resolved fluorescence experiments have been performed with core antennas CP43 and CP47 of PS Ⅱ. Their dynamic fluorescence spectra were obtained with excitation wavelength 514.5 nm. For CP43, the emiss...Ultrafast time_resolved fluorescence experiments have been performed with core antennas CP43 and CP47 of PS Ⅱ. Their dynamic fluorescence spectra were obtained with excitation wavelength 514.5 nm. For CP43, the emission spectrum was found to be from 640 to 780 nm with a peak at ~680 nm and the lifetime of fluorescence was 3.54 ns. For CP47, the emission spectrum was from 630 to 775 nm with a peak at ~691 nm and the fluorescence lifetime was 3.22 ns. The fluorescence emission efficiencies of Chl a in CP43 and CP47 were calculated to be approximately 38.3% and 40.6%, respectively. The energy transfer from β_Car to Chl a in CP43 and CP47 was discussed. The rates of energy transfer from β_Car to Chl a were measured to be about 9.6×10 11 s -1 and 1.3×10 12 s -1 and energy transfer efficiencies 47.5% and 66.5% respectively. The edge_edge distances between β_Car and Chl a in CP43 and CP47 were estimated to be ~0.110 nm and ~0.085 nm respectively.展开更多
Surfactants are widely used in the purification and research of structure and function of the protein complexes in photosynthetic membrane. To elucidate the mechanism of interaction between surfactants and photosystem...Surfactants are widely used in the purification and research of structure and function of the protein complexes in photosynthetic membrane. To elucidate the mechanism of interaction between surfactants and photosystem Ⅰ (PSⅠ), effects of two typical surfactants, Triton X_100 and sodium dodecyl sulfate (SDS) on PSⅠ, were studied at different concentrations. The results were: SDS led to the reduction of apparent absorption intensity and blue shift of absorption peaks; while Triton X_100 led to the decrease of apparent absorption intensity in red region and blue shift of the peak, but to the increase of apparent absorption intensity in blue region. The fourth derivative spectra show that the longwavelength (669 nm and 683 nm) absorbing chlorophyll a was affected greatly and their relative changes of absorbance were axially symmetrical. The presence of surfactant could make the long wavelength fluorescence emission decrease greatly and a new fluorescence peak appeared around 680 nm, it was obvious that the surfactant interceded the transfer of excitation energy from antenna pigments to reaction center. The surfactants might affect the microenvironment of proteins, even the structure of PSⅠ protein subunits and hence changed the binding status of pigments with protein subunits, or the pigments might be released from the subunits. All of these might affect the absorption and the transfer of excitation energy.展开更多
The thermal distortion of an optical reflector surface due to the changing sunlight in a space environment will cause shift and spreading of its reflected focus and thereby influence the performance of space-to-ground...The thermal distortion of an optical reflector surface due to the changing sunlight in a space environment will cause shift and spreading of its reflected focus and thereby influence the performance of space-to-ground laser communication links. Based on the characteristics of a low orbit satellite, the normal shift of a plan mirror caused by thermal distortion is analyzed with the software of the ANSYS of finite element analysis. A general expression of the transmitted beam from a distorted reflector surface and a counting formula for the shifts of the focus center before and after thermal distortion are deduced. The result of simulation shews that the magnitude order of the normal shift of the antenna mirror surface can be as high as tens of urad. The worse the mirror thermal distortion is, the larger the shift of the received focus center is. And the change of the shifts does not obey a linear rule.展开更多
Because it is complex and inconvenient to use the common temperature field calculating method and experiment method, for arialyzing heat transfer properties of laser diode module (LDM), an equivalent electrical netw...Because it is complex and inconvenient to use the common temperature field calculating method and experiment method, for arialyzing heat transfer properties of laser diode module (LDM), an equivalent electrical network method is presented in this paper. Simulation results show that the temperature stability is closely related to ambient temperature, heat sink, LDM current and TEC current. Ambient temperature and TEC controller are the dominant terms effecting on temperature control in practice,展开更多
An alternative scheme is proposed to transfer quantum states and prepare a quantum network in cavity QED. It is based on the interaction of a two-mode cavity field with a three-level V-type atom. In the scheme, the at...An alternative scheme is proposed to transfer quantum states and prepare a quantum network in cavity QED. It is based on the interaction of a two-mode cavity field with a three-level V-type atom. In the scheme, the atom-cavity field interaction is resonant, thus the time required to complete the quantum state transfer process is greatly shortened, which is very important in view of decoherence. Moreover, the present scheme does not require one mode of the cavities to be initially prepared in one-photon state, thus it is more experimentally feasible than the previous ones.展开更多
文摘Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused increases both in ATP content in leaves and the millisecond_delayed light emission of leaves. The increase in net photosynthetic rate caused by NaHSO 3 treatment was similar to that by PMS (phenazine methosulfate) treatment. The grain yield of treated rice was enhanced approximately by 10% after duplicated application of NaHSO 3 in milk_ripening stage. It is suggested that the enhancement of photosynthesis by NaHSO 3 treatment resulted from the effect of increasing ATP supplement. Concomitant with an increase in the photosynthetic rate and ATP content in leaves, the transient increase in chlorophyll fluorescence after the termination of actinic light, which could be used as an index of the cyclic electron flow, was also enhanced by low concentration of NaHSO 3 treatment. Basing on these results it is proposed that the increase in rice photosynthesis caused by low concentrations of NaHSO 3 could be due to the stimulation of the cyclic electron flow around PSⅠ which in turn the enhancement of the coupled photophosphorylation and photosynthesis.
文摘Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties.
文摘By utilizing optical Schlieren method, the Rayleigh Bénard Marangoni convection in mass transfer process was observed. A recorder and a camera separately recorded dynamic and static convective flow patterns during experiments . Different organic solvents were selected to investigate the RBM effects induced by different driving mechanisms including density gradient, surface tension gradient and their combination. Thermal effects produced by solvents evaporation and solute absorption/desorption are thought as an important factor in the creation of RBM convection during the mass transfer process. Qualitative analysis of experimental results is presented on the basis of photos and videotapes that were taken as direct visual evidences. Experimental results show that the thermal effect accompanying the mass transfer can be a cause at the onset of RBM convection and can′t be neglected simply in study of RBM effect driven by mass transfer.
文摘Ultrafast time_resolved fluorescence experiments have been performed with core antennas CP43 and CP47 of PS Ⅱ. Their dynamic fluorescence spectra were obtained with excitation wavelength 514.5 nm. For CP43, the emission spectrum was found to be from 640 to 780 nm with a peak at ~680 nm and the lifetime of fluorescence was 3.54 ns. For CP47, the emission spectrum was from 630 to 775 nm with a peak at ~691 nm and the fluorescence lifetime was 3.22 ns. The fluorescence emission efficiencies of Chl a in CP43 and CP47 were calculated to be approximately 38.3% and 40.6%, respectively. The energy transfer from β_Car to Chl a in CP43 and CP47 was discussed. The rates of energy transfer from β_Car to Chl a were measured to be about 9.6×10 11 s -1 and 1.3×10 12 s -1 and energy transfer efficiencies 47.5% and 66.5% respectively. The edge_edge distances between β_Car and Chl a in CP43 and CP47 were estimated to be ~0.110 nm and ~0.085 nm respectively.
文摘Surfactants are widely used in the purification and research of structure and function of the protein complexes in photosynthetic membrane. To elucidate the mechanism of interaction between surfactants and photosystem Ⅰ (PSⅠ), effects of two typical surfactants, Triton X_100 and sodium dodecyl sulfate (SDS) on PSⅠ, were studied at different concentrations. The results were: SDS led to the reduction of apparent absorption intensity and blue shift of absorption peaks; while Triton X_100 led to the decrease of apparent absorption intensity in red region and blue shift of the peak, but to the increase of apparent absorption intensity in blue region. The fourth derivative spectra show that the longwavelength (669 nm and 683 nm) absorbing chlorophyll a was affected greatly and their relative changes of absorbance were axially symmetrical. The presence of surfactant could make the long wavelength fluorescence emission decrease greatly and a new fluorescence peak appeared around 680 nm, it was obvious that the surfactant interceded the transfer of excitation energy from antenna pigments to reaction center. The surfactants might affect the microenvironment of proteins, even the structure of PSⅠ protein subunits and hence changed the binding status of pigments with protein subunits, or the pigments might be released from the subunits. All of these might affect the absorption and the transfer of excitation energy.
基金Funded by 863 project (NO:2002AA107493)youthfounda-tion project of UESTC(NO:JX03018)
文摘The thermal distortion of an optical reflector surface due to the changing sunlight in a space environment will cause shift and spreading of its reflected focus and thereby influence the performance of space-to-ground laser communication links. Based on the characteristics of a low orbit satellite, the normal shift of a plan mirror caused by thermal distortion is analyzed with the software of the ANSYS of finite element analysis. A general expression of the transmitted beam from a distorted reflector surface and a counting formula for the shifts of the focus center before and after thermal distortion are deduced. The result of simulation shews that the magnitude order of the normal shift of the antenna mirror surface can be as high as tens of urad. The worse the mirror thermal distortion is, the larger the shift of the received focus center is. And the change of the shifts does not obey a linear rule.
文摘Because it is complex and inconvenient to use the common temperature field calculating method and experiment method, for arialyzing heat transfer properties of laser diode module (LDM), an equivalent electrical network method is presented in this paper. Simulation results show that the temperature stability is closely related to ambient temperature, heat sink, LDM current and TEC current. Ambient temperature and TEC controller are the dominant terms effecting on temperature control in practice,
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10225421 and 10674025
文摘An alternative scheme is proposed to transfer quantum states and prepare a quantum network in cavity QED. It is based on the interaction of a two-mode cavity field with a three-level V-type atom. In the scheme, the atom-cavity field interaction is resonant, thus the time required to complete the quantum state transfer process is greatly shortened, which is very important in view of decoherence. Moreover, the present scheme does not require one mode of the cavities to be initially prepared in one-photon state, thus it is more experimentally feasible than the previous ones.