The analytic response theory at density functional theory level is applied to investigate onephoton and two-photon absorption properties of a series of recently synthesized pyrene-core derivatives. The theoretical res...The analytic response theory at density functional theory level is applied to investigate onephoton and two-photon absorption properties of a series of recently synthesized pyrene-core derivatives. The theoretical results show that there are a few charge-transfer states for each compound in the lower energy region. The one-photon absorption properties of the five investigated compounds are highly consistent with those given by experimental measurements. The two-photon absorption intensities of the compounds are greatly enhanced with the increments of the molecular sizes, in which the two-photon absorption cross section of the four-branched compound is about 5.6 times of that of the mono-branched molecule. Fhrthermore, it is shown that the two-photon absorption properties are sensitive to the geometrical arrangements.展开更多
The photoabsorption cross sections of condensed atoms and molecules have proven to be dependent not only on the imaginary parts but also on the real parts of the polarizabilities due to the strong interatomie interact...The photoabsorption cross sections of condensed atoms and molecules have proven to be dependent not only on the imaginary parts but also on the real parts of the polarizabilities due to the strong interatomie interactions in condensed environment. The real parts of the polarizabilities calculated usually by using the famous Kramers-Kronig transformation (KKT) from the photoabsorption cross sections of the isolated atoms are very sensitive to the accuracy of the implementation method of the infinite integral in the KKT. The influence of the integral instability of the KKT and the real part of the polarizability on the variation of the photoabsorption cross sections with the number density and the structure of the condensed matter has been studied in the present work for the first time. The conclusion is that the integration method with interpolation has given more reasonable results than the direct truncation method if some appropriate interpolation functions have been used. Some notes and conclusions have also been given for the applications of the alternative coupled expressions of photoabsorption cross sections.展开更多
H_(2)S is one of the most important characteristic decomposition components of SF_(6)insulated gas,and the detection of trace H_(2)S is significant for early fault diagnosis of gas insulated electrical equipment.A 157...H_(2)S is one of the most important characteristic decomposition components of SF_(6)insulated gas,and the detection of trace H_(2)S is significant for early fault diagnosis of gas insulated electrical equipment.A 1578 nm wavelength distributed feedback diode laser(DFB-DL)based cavity ring-down spectroscopy(CRDS)experimental platform is developed to monitor the concentrations of H_(2)S in SF_(6)and SF_(6)/N_(2)mixture carrier gas.The detection sensitivity is higher than 1×10^(-6).The absorption cross section parameterσis vital for calculating the concentration.With repeated experiments using standard gas samples,parameterσof H_(2)S in pure SF_(6)and SF_(6)/N_(2)mixture carrier with different mixing ratios is calibrated.Compared with the simulatedσvalues,the influence of carrier gas on the broadening of spectral profile is discussed.The variation of absorption cross sectionσwith different carrier gas mixing ratios is studied as well,so that the calculation of the concentration in the carrier gas of any mixing ratio is possible.Thus,the application of CRDS in trace component detection of gas insulated electrical equipment is promising.展开更多
Two-photon fluorescence dyes have shown promising applications in biomedical imaging.However,the substitution site effect on geometric structures and photophysical properties of fluorescence dyes is rarely illustrated...Two-photon fluorescence dyes have shown promising applications in biomedical imaging.However,the substitution site effect on geometric structures and photophysical properties of fluorescence dyes is rarely illustrated in detail.In this work,a series of new lipid droplets detection dyes are designed and studied,molecular optical properties and non-radiative transitions are analyzed.The intramolecular weak interaction and electron-hole analysis reveal its inner mechanisms.All dyes are proven to possess excellent photophysical properties with high fluorescence quantum efficiency and large stokes shift as well as remarkable two-photon absorption cross section.Our work reasonably elucidates the experimental measurements and the effects of substitution site on two-photon absorption and excited states properties of lipid droplets detection NAPBr dyes are highlighted,which could provide a theoretical perspective for designing efficient organic dyes for lipid droplets detection in biology and medicine fields.展开更多
We investigate the fluorene-vinylene unit dependent photo-physical properties of multi- branched truxene based oligomers (Tr-OFVn, n=1-4) employing steady-state absorption and emission spectroscopy, transient absorp...We investigate the fluorene-vinylene unit dependent photo-physical properties of multi- branched truxene based oligomers (Tr-OFVn, n=1-4) employing steady-state absorption and emission spectroscopy, transient absorption spectroscopy, two-photon fluorescence, and z-scan technique. The results show that the increasing of fluorene-vinylene unit leads to a red-shift in the spectra of absorption and fluorescence, and shortens the excited state lifetime. Meanwhile, two-photon fluorescence efficiency and two-photon absorption cross section of truxene based oligolners gradually enhance in company with the extension of π- conjugated length. In addition, the values of two-photon absorption cross section modeled on the sum-over-state approach agree well with the experimental ones. The results indicate multi-branched truxene based oligomers bearing organic materials for two-photon applications.展开更多
By numerically solving the Maxwell-Bloch equations using an iterative predictor-corrector finite-difference time-domain technique, we investigate propagating properties of a few-cycle laser pulse in a 4,4'-bis(di-n-...By numerically solving the Maxwell-Bloch equations using an iterative predictor-corrector finite-difference time-domain technique, we investigate propagating properties of a few-cycle laser pulse in a 4,4'-bis(di-n-butylamino) stilbene (BDBAS) molecular medium when a static electric field exists. Dynamical two-photon absorption (TPA) cross sections are obtained and optical limiting (OL) behavior is displayed. The results show that when the static electric field intensity increases, the dynamical TPA cross section is enhanced and the OL behavior is improved. Moreover, both even- and odd-order harmonic spectral components are generated with existence of the static electric field because it breaks the inversion symmetry of the BDBAS molecule. This work provides a method to modulate the nonlinear optical properties of the BDBAS compounds.展开更多
Optical limiting (OL) properties and two-photon absorption (TPA) of a series of covalently linked graphene oxide-porphyrin composite materials have been investigated by numerically solving the rate equations and f...Optical limiting (OL) properties and two-photon absorption (TPA) of a series of covalently linked graphene oxide-porphyrin composite materials have been investigated by numerically solving the rate equations and field intensity equation with an iterative predictor-corrector finite-difference time-domain technique in nanosecond time domain. Our results show that graphene oxide-porphyrin composites exhibit enhanced OL behavior and possess larger TPA cross section compared with individual porphyrins. Interestingly~ unlike the previous result that porphyrin with heavier central metal shows better nonlinear abilities than that with- out metal substitute, graphene oxide-metal free porphyrin composite has stronger nonlinear absorption properties compared with graphene oxide-metal porphyrin composite. The com- putational results are in reasonable agreement with the experimental ones. Special attention has been paid to the influence of thickness of the medium and pulse width on TPA cross sections, which presents that larger TPA cross sections are obtained as the medium is thicker or the pulse duration is wider.展开更多
We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms. With the application of the first-order te...We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms. With the application of the first-order term of the Baker Hausdorf expansion, the absorption cross-section for the hydrogen 2s atom decreases to a minimum, the Cooper paJr minimum, at low photon energy. Such a minimum is absent in the exact absorption cross-section for photon by a hydrogen 2s atom. We have extended the calculation for the absorption cross-section of the hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron to include the second-order term of the Baker-Hausdorf expansion and observed a great reduction in the dip associated with the Cooper pair minimum at the zero crossing.展开更多
The renormalization of the orbital g-factor in nuclei is discussed on the basis of gauge invariance.The relation of the orbital g-factor to the integrated E1 photoabsorption cross section is reviewed,and its relation ...The renormalization of the orbital g-factor in nuclei is discussed on the basis of gauge invariance.The relation of the orbital g-factor to the integrated E1 photoabsorption cross section is reviewed,and its relation to the M1 sum rule for the scissors mode of deformed nuclei is examined.展开更多
Tm^(3+) doped Na_5Lu_9F_(32) single crystal with high optical quality was grown by an improved Bridgman method. The Judd-Ofelt intensity parameters ?_t(t=2, 4, 6) were calculated according to the measured absorption s...Tm^(3+) doped Na_5Lu_9F_(32) single crystal with high optical quality was grown by an improved Bridgman method. The Judd-Ofelt intensity parameters ?_t(t=2, 4, 6) were calculated according to the measured absorption spectra and physical-chemical properties of the obtained Na_5Lu_9F_(32) single crystal. The stimulated emission cross-section of the ~3F_4→~3H_6 transition(~1.8 μm) is 0.35×10^(-20) cm^2 for Tm^(3+) doped Na_5Lu_9F_(32) single crystal. The emission spectra under the excitation of 790 nm laser diode(LD) and fluorescence lifetime at 1.8 μm were measured to reveal the fluorescence properties of Tm^(3+) doped Na_5Lu_9F_(32) single crystal. The research results show that the Tm^(3+) doped Na_5Lu_9F_(32) single crystal has larger stimulated emission cross-section compared with other crystals. All these spectral properties suggest that this kind of Tm^(3+)doped Na_5Lu_9F_(32) crystal with high physical-chemical stability and high-efficiency emission at 1.8 μm may be used as potential laser materials for optical devices.展开更多
文摘The analytic response theory at density functional theory level is applied to investigate onephoton and two-photon absorption properties of a series of recently synthesized pyrene-core derivatives. The theoretical results show that there are a few charge-transfer states for each compound in the lower energy region. The one-photon absorption properties of the five investigated compounds are highly consistent with those given by experimental measurements. The two-photon absorption intensities of the compounds are greatly enhanced with the increments of the molecular sizes, in which the two-photon absorption cross section of the four-branched compound is about 5.6 times of that of the mono-branched molecule. Fhrthermore, it is shown that the two-photon absorption properties are sensitive to the geometrical arrangements.
基金Supported by the Natural Science Foundations of Ludong University under Grant Nos.22270301 and L20072804
文摘The photoabsorption cross sections of condensed atoms and molecules have proven to be dependent not only on the imaginary parts but also on the real parts of the polarizabilities due to the strong interatomie interactions in condensed environment. The real parts of the polarizabilities calculated usually by using the famous Kramers-Kronig transformation (KKT) from the photoabsorption cross sections of the isolated atoms are very sensitive to the accuracy of the implementation method of the infinite integral in the KKT. The influence of the integral instability of the KKT and the real part of the polarizability on the variation of the photoabsorption cross sections with the number density and the structure of the condensed matter has been studied in the present work for the first time. The conclusion is that the integration method with interpolation has given more reasonable results than the direct truncation method if some appropriate interpolation functions have been used. Some notes and conclusions have also been given for the applications of the alternative coupled expressions of photoabsorption cross sections.
基金supported in part by the National Key R&D Program of China(No.2021YFF0603100)in part by the Leading Innovation and Entrepreneurship Team in Zhejiang Province(No.2019R01014)
文摘H_(2)S is one of the most important characteristic decomposition components of SF_(6)insulated gas,and the detection of trace H_(2)S is significant for early fault diagnosis of gas insulated electrical equipment.A 1578 nm wavelength distributed feedback diode laser(DFB-DL)based cavity ring-down spectroscopy(CRDS)experimental platform is developed to monitor the concentrations of H_(2)S in SF_(6)and SF_(6)/N_(2)mixture carrier gas.The detection sensitivity is higher than 1×10^(-6).The absorption cross section parameterσis vital for calculating the concentration.With repeated experiments using standard gas samples,parameterσof H_(2)S in pure SF_(6)and SF_(6)/N_(2)mixture carrier with different mixing ratios is calibrated.Compared with the simulatedσvalues,the influence of carrier gas on the broadening of spectral profile is discussed.The variation of absorption cross sectionσwith different carrier gas mixing ratios is studied as well,so that the calculation of the concentration in the carrier gas of any mixing ratio is possible.Thus,the application of CRDS in trace component detection of gas insulated electrical equipment is promising.
基金This work was supported by the National Natural Science Foundation of China(No.11804196 and No.11904210)the Project funded by China Postdoctoral Science Foundation(No.2018M642689)the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,(South China University of Technology)(No.2019B030301003).
文摘Two-photon fluorescence dyes have shown promising applications in biomedical imaging.However,the substitution site effect on geometric structures and photophysical properties of fluorescence dyes is rarely illustrated in detail.In this work,a series of new lipid droplets detection dyes are designed and studied,molecular optical properties and non-radiative transitions are analyzed.The intramolecular weak interaction and electron-hole analysis reveal its inner mechanisms.All dyes are proven to possess excellent photophysical properties with high fluorescence quantum efficiency and large stokes shift as well as remarkable two-photon absorption cross section.Our work reasonably elucidates the experimental measurements and the effects of substitution site on two-photon absorption and excited states properties of lipid droplets detection NAPBr dyes are highlighted,which could provide a theoretical perspective for designing efficient organic dyes for lipid droplets detection in biology and medicine fields.
文摘We investigate the fluorene-vinylene unit dependent photo-physical properties of multi- branched truxene based oligomers (Tr-OFVn, n=1-4) employing steady-state absorption and emission spectroscopy, transient absorption spectroscopy, two-photon fluorescence, and z-scan technique. The results show that the increasing of fluorene-vinylene unit leads to a red-shift in the spectra of absorption and fluorescence, and shortens the excited state lifetime. Meanwhile, two-photon fluorescence efficiency and two-photon absorption cross section of truxene based oligolners gradually enhance in company with the extension of π- conjugated length. In addition, the values of two-photon absorption cross section modeled on the sum-over-state approach agree well with the experimental ones. The results indicate multi-branched truxene based oligomers bearing organic materials for two-photon applications.
文摘By numerically solving the Maxwell-Bloch equations using an iterative predictor-corrector finite-difference time-domain technique, we investigate propagating properties of a few-cycle laser pulse in a 4,4'-bis(di-n-butylamino) stilbene (BDBAS) molecular medium when a static electric field exists. Dynamical two-photon absorption (TPA) cross sections are obtained and optical limiting (OL) behavior is displayed. The results show that when the static electric field intensity increases, the dynamical TPA cross section is enhanced and the OL behavior is improved. Moreover, both even- and odd-order harmonic spectral components are generated with existence of the static electric field because it breaks the inversion symmetry of the BDBAS molecule. This work provides a method to modulate the nonlinear optical properties of the BDBAS compounds.
基金This work was supported by the 973 program (No.2011CB808100) and the Natural Science Foundation of Shandong Province (No.ZR2014AM026).
文摘Optical limiting (OL) properties and two-photon absorption (TPA) of a series of covalently linked graphene oxide-porphyrin composite materials have been investigated by numerically solving the rate equations and field intensity equation with an iterative predictor-corrector finite-difference time-domain technique in nanosecond time domain. Our results show that graphene oxide-porphyrin composites exhibit enhanced OL behavior and possess larger TPA cross section compared with individual porphyrins. Interestingly~ unlike the previous result that porphyrin with heavier central metal shows better nonlinear abilities than that with- out metal substitute, graphene oxide-metal free porphyrin composite has stronger nonlinear absorption properties compared with graphene oxide-metal porphyrin composite. The com- putational results are in reasonable agreement with the experimental ones. Special attention has been paid to the influence of thickness of the medium and pulse width on TPA cross sections, which presents that larger TPA cross sections are obtained as the medium is thicker or the pulse duration is wider.
文摘We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms. With the application of the first-order term of the Baker Hausdorf expansion, the absorption cross-section for the hydrogen 2s atom decreases to a minimum, the Cooper paJr minimum, at low photon energy. Such a minimum is absent in the exact absorption cross-section for photon by a hydrogen 2s atom. We have extended the calculation for the absorption cross-section of the hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron to include the second-order term of the Baker-Hausdorf expansion and observed a great reduction in the dip associated with the Cooper pair minimum at the zero crossing.
文摘The renormalization of the orbital g-factor in nuclei is discussed on the basis of gauge invariance.The relation of the orbital g-factor to the integrated E1 photoabsorption cross section is reviewed,and its relation to the M1 sum rule for the scissors mode of deformed nuclei is examined.
基金supported by the National Natural Science Foundation of China(Nos.51472125 and 51272109)the Natural Science Foundation of Zhejiang Province(No.LZ17E020001)K.C. Wong Magna Fund in Ningbo University
文摘Tm^(3+) doped Na_5Lu_9F_(32) single crystal with high optical quality was grown by an improved Bridgman method. The Judd-Ofelt intensity parameters ?_t(t=2, 4, 6) were calculated according to the measured absorption spectra and physical-chemical properties of the obtained Na_5Lu_9F_(32) single crystal. The stimulated emission cross-section of the ~3F_4→~3H_6 transition(~1.8 μm) is 0.35×10^(-20) cm^2 for Tm^(3+) doped Na_5Lu_9F_(32) single crystal. The emission spectra under the excitation of 790 nm laser diode(LD) and fluorescence lifetime at 1.8 μm were measured to reveal the fluorescence properties of Tm^(3+) doped Na_5Lu_9F_(32) single crystal. The research results show that the Tm^(3+) doped Na_5Lu_9F_(32) single crystal has larger stimulated emission cross-section compared with other crystals. All these spectral properties suggest that this kind of Tm^(3+)doped Na_5Lu_9F_(32) crystal with high physical-chemical stability and high-efficiency emission at 1.8 μm may be used as potential laser materials for optical devices.