用溶胶-凝胶法制得Cu/Fe2O3-TiO2光催化材料。用XRD、Ram an、TPR、IR、TEM、UV-V is DRS测试技术和光催化反应等对固体材料的结构和性能进行了表征。结果表明,Fe2O3的质量分数为10%时,在TiO2表面以单分子层分散,Fe2O3的引入使TiO2吸光...用溶胶-凝胶法制得Cu/Fe2O3-TiO2光催化材料。用XRD、Ram an、TPR、IR、TEM、UV-V is DRS测试技术和光催化反应等对固体材料的结构和性能进行了表征。结果表明,Fe2O3的质量分数为10%时,在TiO2表面以单分子层分散,Fe2O3的引入使TiO2吸光限蓝移。Fe2O3含量超过单分子层分散时,有晶相Fe2O3生成,光吸收性能下降。Fe—O—Ti键的形成加强了半导体之间的相互作用,有利于光生载流子在半导体间的输送。少量Cu的引入,使复合材料的吸光域向可见光范围扩展。光催化反应性能与材料的光响应能力密切相关。在光催化CO2和CH3NH2直接合成NH2CH2COOH的反应中,负载质量分数为10%Fe2O3的光催化反应性能最优。在120℃、常压、空速200 h-1、CO2与CH3NH2摩尔比为1∶1和6.5×10-4W/cm2的紫外灯照射下,CH3NH2转化率为1.35%,NH2CH2COOH选择性达92.0%。展开更多
The goal of this work is to investigate the seismic behaviour of plan-asymmetric structures by considering the least seismic-resistant directions and the spatial features of the seismic event. New tools for the analys...The goal of this work is to investigate the seismic behaviour of plan-asymmetric structures by considering the least seismic-resistant directions and the spatial features of the seismic event. New tools for the analysis of the seismic behaviour of plan-asymmetric structures are herein presented and the concepts of "Polar Spectrum" and limit domains are discussed. In particular, the capacity of the structure is described by using the limit domains based on the Non Linear Static Procedures, while the seismic demand is analysed by introducing a new representation of the spectral response. This representation is based on the construction of a spectral surface obtained by the spectral seismic response for different in-plan directions and the in-plan projection of this surface is herein defined "Polar Spectrum". The obtained results for two benchmark structures, verified by means of non-linear incremental dynamic analyses, have pointed out that non-linear static analyses, carried out for different in-plan directions of the incoming seismic action, have allowed us to accurately evaluate the least seismic resistant directions.展开更多
In this paper, preparation process of nano TiO2 with sol-gel method at low temperature was optimized by response surface method. The nano TiO2 was analysised by DRS and XRD. Result show that: 20mL tetrabutyl titanate...In this paper, preparation process of nano TiO2 with sol-gel method at low temperature was optimized by response surface method. The nano TiO2 was analysised by DRS and XRD. Result show that: 20mL tetrabutyl titanate, 10mL acetic acid, 6mL ethanol dosage, aging time was 29h, aging temperature was 36℃, Nano TiO2 was prepared under the condition. Particle size of nano particles was 37.3nm, Photodegradation rate was 90.2%. It had good photocatalytic ability.展开更多
Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report...Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.展开更多
Ternary layered compound materials(bismuth oxyhalides and metal phosphorus trichalcogenides)stand out in electronic and optoelectronic fields due to their interesting physical properties.However,few studies focus on t...Ternary layered compound materials(bismuth oxyhalides and metal phosphorus trichalcogenides)stand out in electronic and optoelectronic fields due to their interesting physical properties.However,few studies focus on the preparation of high-quality two-dimensional(2D)BiOBr crystals with a typical layered structure,let alone their optoelectronic applications.Here,for the first time,high-quality 2D BiOBr crystals with ultrathin thicknesses(less than 10 nm)and large domain sizes(~100μm)were efficiently prepared via a modified space-confined chemical vapor deposition(SCCVD)method.It is demonstrated that a moderate amount of H2O molecules in the SCCVD system greatly promote the formation of high-quality 2D BiOBr crystals because of the strong polarity of H2O molecules.In addition,a linear relationship between the thickness of BiOBr nanosheets and Raman shift of A1g(1)mode was found.Corresponding theoretical calculations were carried out to verify the experimental data.Furthermore,the BiOBr-based photodetector was fabricated,exhibiting excellent performances with a responsivity of 12.4 A W-1 and a detectivity of 1.6×1013 Jones at 365 nm.This study paves the way for controllable preparation of high-quality 2D BiOBr crystals and implies intriguing opportunities of them in optoelectronic applications.展开更多
Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetect...Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots(QDs)/ZnO nanoparticles(NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible(UV-Vis)to near infrared detector(NIR) range with a remarkable current on/off ratio of 7.08×10^3under 375 nm light illumination.Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of4.54 A W-1and 3.98×10^12Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.展开更多
A simple self-catalyzed chemical vapor deposition process was conducted to synthesize single-crystalline GaSb nanowires,where Ga droplets were utilized as the catalysts.The as-grown GaSb nanowires exhibited typical p-...A simple self-catalyzed chemical vapor deposition process was conducted to synthesize single-crystalline GaSb nanowires,where Ga droplets were utilized as the catalysts.The as-grown GaSb nanowires exhibited typical p-type semiconductor behavior with the calculated hole mobility of about 0.042 cm^2 V^-1 s^-1.The photoresponse properties of the GaSb nanowires were studied by fabricating nanowire photodetectors on both rigid and flexible substrates.The results revealed that the photodetectors exhibited broad spectral response ranging from ultraviolet,visible,to near-infrared region.For the device on rigid substrate,the corresponding responsivity and the detectivity were calculated to be 3.86×10^3 A W-1 and 3.15×10^13 Jones for 500 nm light,and 7.22×10^2 A W-1 and 5.90×10^12 Jones for 808 nm light,respectively,which were the highest value compared with those of other reported Ga1-xInxAsySb1-y structure nanowires.Besides,the flexible photodetectors not only maintained the comparable good photoresponse properties as the rigid one,but also possessed excellent mechanical flexibility and stability.This study could facilitate the understanding on the fundamental characteristics of self-catalyzed grown GaSb nanowires and the design of functional nano-optoelectronic devices based on GaSb nanowires.展开更多
There is a considerable interest in producing and understanding the optical and spectroscopic properties of ordered nanoparticle assemblies. Herein, we describe and interpret the optical absorbance and Raman propertie...There is a considerable interest in producing and understanding the optical and spectroscopic properties of ordered nanoparticle assemblies. Herein, we describe and interpret the optical absorbance and Raman properties of 5.9 nm ± 0.3 nm diameter silver nanocrystals coated with dodecanethiol and organized in highly ordered 3D superlattices of different heights. Each superlattice was studied individually, which allowed to elaborate a model based on Maxwell-Garnett theory to reproduce qualitatively the height and wavelength dependence of the absorbance. Importantly, because of their small size compared to that of traditional nanoparticles used in Surface Enhanced Raman Spectroscopy (SERS), the large 3D distribution of hot spots generated by the silver superlattices allowed to easily obtain SERS spectra of the surrounding ligands despite their intrinsic low Raman cross section. Accordingly, traces of thiophenol could be detected very easily.展开更多
文摘用溶胶-凝胶法制得Cu/Fe2O3-TiO2光催化材料。用XRD、Ram an、TPR、IR、TEM、UV-V is DRS测试技术和光催化反应等对固体材料的结构和性能进行了表征。结果表明,Fe2O3的质量分数为10%时,在TiO2表面以单分子层分散,Fe2O3的引入使TiO2吸光限蓝移。Fe2O3含量超过单分子层分散时,有晶相Fe2O3生成,光吸收性能下降。Fe—O—Ti键的形成加强了半导体之间的相互作用,有利于光生载流子在半导体间的输送。少量Cu的引入,使复合材料的吸光域向可见光范围扩展。光催化反应性能与材料的光响应能力密切相关。在光催化CO2和CH3NH2直接合成NH2CH2COOH的反应中,负载质量分数为10%Fe2O3的光催化反应性能最优。在120℃、常压、空速200 h-1、CO2与CH3NH2摩尔比为1∶1和6.5×10-4W/cm2的紫外灯照射下,CH3NH2转化率为1.35%,NH2CH2COOH选择性达92.0%。
文摘The goal of this work is to investigate the seismic behaviour of plan-asymmetric structures by considering the least seismic-resistant directions and the spatial features of the seismic event. New tools for the analysis of the seismic behaviour of plan-asymmetric structures are herein presented and the concepts of "Polar Spectrum" and limit domains are discussed. In particular, the capacity of the structure is described by using the limit domains based on the Non Linear Static Procedures, while the seismic demand is analysed by introducing a new representation of the spectral response. This representation is based on the construction of a spectral surface obtained by the spectral seismic response for different in-plan directions and the in-plan projection of this surface is herein defined "Polar Spectrum". The obtained results for two benchmark structures, verified by means of non-linear incremental dynamic analyses, have pointed out that non-linear static analyses, carried out for different in-plan directions of the incoming seismic action, have allowed us to accurately evaluate the least seismic resistant directions.
文摘In this paper, preparation process of nano TiO2 with sol-gel method at low temperature was optimized by response surface method. The nano TiO2 was analysised by DRS and XRD. Result show that: 20mL tetrabutyl titanate, 10mL acetic acid, 6mL ethanol dosage, aging time was 29h, aging temperature was 36℃, Nano TiO2 was prepared under the condition. Particle size of nano particles was 37.3nm, Photodegradation rate was 90.2%. It had good photocatalytic ability.
基金supported by the National Natural Science Foundation of China (21875212)the Key Program of National Natural Science Foundation (51632008)+2 种基金the Major R&D Plan of Zhejiang Natural Science Foundation (LD18E020001)the National Key Research and Development Program (2016YFA0200204)the Fundamental Research Funds for the Central Universities。
文摘Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.
基金financially supported by the National Natural Science Foundation of China(11674265)the Natural Science Basic Research Project of Shaanxi Province(2018JZ6003)the Fundamental Research Funds for the Central Universities(3102019MS0402)。
文摘Ternary layered compound materials(bismuth oxyhalides and metal phosphorus trichalcogenides)stand out in electronic and optoelectronic fields due to their interesting physical properties.However,few studies focus on the preparation of high-quality two-dimensional(2D)BiOBr crystals with a typical layered structure,let alone their optoelectronic applications.Here,for the first time,high-quality 2D BiOBr crystals with ultrathin thicknesses(less than 10 nm)and large domain sizes(~100μm)were efficiently prepared via a modified space-confined chemical vapor deposition(SCCVD)method.It is demonstrated that a moderate amount of H2O molecules in the SCCVD system greatly promote the formation of high-quality 2D BiOBr crystals because of the strong polarity of H2O molecules.In addition,a linear relationship between the thickness of BiOBr nanosheets and Raman shift of A1g(1)mode was found.Corresponding theoretical calculations were carried out to verify the experimental data.Furthermore,the BiOBr-based photodetector was fabricated,exhibiting excellent performances with a responsivity of 12.4 A W-1 and a detectivity of 1.6×1013 Jones at 365 nm.This study paves the way for controllable preparation of high-quality 2D BiOBr crystals and implies intriguing opportunities of them in optoelectronic applications.
基金funded by the National Natural Science Foundation of China (U1432249)the National Key R&D Program of China (2017YFA0205002)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)supported by Collaborative Innovation Center of Suzhou Nano Science & Technology and Joint International Research Laboratory of Carbon-Based Functional Materials and Devicesthe support from China Postdoctoral Science Foundation (2017M610346)Natural Science Foundation of Jiangsu Province of China (BK20170343)
文摘Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots(QDs)/ZnO nanoparticles(NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible(UV-Vis)to near infrared detector(NIR) range with a remarkable current on/off ratio of 7.08×10^3under 375 nm light illumination.Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of4.54 A W-1and 3.98×10^12Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.
基金supported by the National Natural Science Foundation of China (61574132 and 61625404)
文摘A simple self-catalyzed chemical vapor deposition process was conducted to synthesize single-crystalline GaSb nanowires,where Ga droplets were utilized as the catalysts.The as-grown GaSb nanowires exhibited typical p-type semiconductor behavior with the calculated hole mobility of about 0.042 cm^2 V^-1 s^-1.The photoresponse properties of the GaSb nanowires were studied by fabricating nanowire photodetectors on both rigid and flexible substrates.The results revealed that the photodetectors exhibited broad spectral response ranging from ultraviolet,visible,to near-infrared region.For the device on rigid substrate,the corresponding responsivity and the detectivity were calculated to be 3.86×10^3 A W-1 and 3.15×10^13 Jones for 500 nm light,and 7.22×10^2 A W-1 and 5.90×10^12 Jones for 808 nm light,respectively,which were the highest value compared with those of other reported Ga1-xInxAsySb1-y structure nanowires.Besides,the flexible photodetectors not only maintained the comparable good photoresponse properties as the rigid one,but also possessed excellent mechanical flexibility and stability.This study could facilitate the understanding on the fundamental characteristics of self-catalyzed grown GaSb nanowires and the design of functional nano-optoelectronic devices based on GaSb nanowires.
文摘There is a considerable interest in producing and understanding the optical and spectroscopic properties of ordered nanoparticle assemblies. Herein, we describe and interpret the optical absorbance and Raman properties of 5.9 nm ± 0.3 nm diameter silver nanocrystals coated with dodecanethiol and organized in highly ordered 3D superlattices of different heights. Each superlattice was studied individually, which allowed to elaborate a model based on Maxwell-Garnett theory to reproduce qualitatively the height and wavelength dependence of the absorbance. Importantly, because of their small size compared to that of traditional nanoparticles used in Surface Enhanced Raman Spectroscopy (SERS), the large 3D distribution of hot spots generated by the silver superlattices allowed to easily obtain SERS spectra of the surrounding ligands despite their intrinsic low Raman cross section. Accordingly, traces of thiophenol could be detected very easily.