We report a method for improving temporal response of FBG-based temperature sensors.It has been demonstrated that by filling thermal conductive pastes between a sensing FBG and its package,the temporal response of the...We report a method for improving temporal response of FBG-based temperature sensors.It has been demonstrated that by filling thermal conductive pastes between a sensing FBG and its package,the temporal response of the FBG-based temperature sensor can be significantly improved while isolating the strain and vibration.展开更多
An efficient technique is used to flatten the spectral response of an arrayed waveguide grating (AWG) multiplexer. By subtracting an increment from the core width of odd arrayed waveguides and by adding the same inc...An efficient technique is used to flatten the spectral response of an arrayed waveguide grating (AWG) multiplexer. By subtracting an increment from the core width of odd arrayed waveguides and by adding the same increment to that of even arrayed waveguides,a box-like spectral response can be obtained. A 17 × 17 polymer AWG multiplexer with box- like spectral response has been made using FPE polymer materials. Measured result for the AWG shows that the box-like spectral response has a 3dB bandwidth of 0. 476nm, the crosstalk is about or less than - 21dB for every output channel,and the insertion loss is 13-15dB.展开更多
Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments ...Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments were designed to obtain the evolution of the spectrum when a FBG is subjected to non-uniform strain. In this paper, the spectral responses of a FBG under non-uniform strain distributions are given and a numerical simulation based on the Runge-Kutta method is introduced to investigate the responses of the FBG under some typical non-uniform transverse strain fields, including both linear strain gradient and quadratic strain field. Experiment is carried out by using loads applied at different locations near the FBG. Good agreements between experimental results and numerical simulations are obtained.展开更多
Two-dimensional(2D) ternary materials have sprung up in a broad variety of optoelectronic applications due to their robust degree of freedom to design the physical properties of the materials through adjusting the sto...Two-dimensional(2D) ternary materials have sprung up in a broad variety of optoelectronic applications due to their robust degree of freedom to design the physical properties of the materials through adjusting the stoichiometric ratio. However, the controlled growth of high-quality 2D ternary materials with good chemical stoichiometry remains challenging, which severely impedes their further development and future device applications. Herein, we synthesize ternary Bi_(2)Te_(2)Se(BTS) flakes with a thickness down to 4 nm and a lateral dimension about 60 μm by an atmospheric-pressure solid source thermal evaporation method on a mica substrate. The phonon vibration and electrical transportation of 2D BTS are respectively investigated by temperature-dependent Raman spectrum and conductivity measurements. Furthermore, the photodetector based on 2D BTS exhibits excellent performance with a high light on/off ratio of 1300(365 nm), a wide spectral response range from 365 to 980 nm, and an ultra-fast response speed up to 2 μs. In addition, its electrical and photoelectric properties can be modulated by the gate voltage, offering an improved infrared responsivity to 2.74 A W^(-1) and an on/off ratio of 2266 under 980 nm. This work introduces an effective approach to obtain 2D BTS flakes and demonstrates their excellent prospects in optoelectronics.展开更多
Based on the transfer matrix method,a detailed theoretical and numerical study on double-phase-shifted fiber Bragg grating(FBG)is investigated.Temporal responses of the double-phase-shifted FBG to optical pulse are an...Based on the transfer matrix method,a detailed theoretical and numerical study on double-phase-shifted fiber Bragg grating(FBG)is investigated.Temporal responses of the double-phase-shifted FBG to optical pulse are analyzed and the influence of the two phase-shifts’position on the reflected output pulse is evaluated.Results demonstrate that very different temporal pulse waveforms can be achieved by adjusting the length ratio(α=L2/L1).Specifically,a transform-limited Gaussian input optical pulse can be shaped into flat-top square pulse(α=1.81)or two identical optical pulse sequences(α=1.93).展开更多
文摘We report a method for improving temporal response of FBG-based temperature sensors.It has been demonstrated that by filling thermal conductive pastes between a sensing FBG and its package,the temporal response of the FBG-based temperature sensor can be significantly improved while isolating the strain and vibration.
基金supported by the National Natural Science Foundation of China(No.60576045)~~
文摘An efficient technique is used to flatten the spectral response of an arrayed waveguide grating (AWG) multiplexer. By subtracting an increment from the core width of odd arrayed waveguides and by adding the same increment to that of even arrayed waveguides,a box-like spectral response can be obtained. A 17 × 17 polymer AWG multiplexer with box- like spectral response has been made using FPE polymer materials. Measured result for the AWG shows that the box-like spectral response has a 3dB bandwidth of 0. 476nm, the crosstalk is about or less than - 21dB for every output channel,and the insertion loss is 13-15dB.
基金supported by the National High Technology Research and Development Program of China (No.2007AA03Z117)the Key Program of National Natural Science Foundation of China (No.50830201)
文摘Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments were designed to obtain the evolution of the spectrum when a FBG is subjected to non-uniform strain. In this paper, the spectral responses of a FBG under non-uniform strain distributions are given and a numerical simulation based on the Runge-Kutta method is introduced to investigate the responses of the FBG under some typical non-uniform transverse strain fields, including both linear strain gradient and quadratic strain field. Experiment is carried out by using loads applied at different locations near the FBG. Good agreements between experimental results and numerical simulations are obtained.
基金supported by the National Natural Science Foundation of China (21825103)Hubei Provincial Natural Science Foundation of China (2019CFA002)the Fundamental Research Funds for the Central Universities (2019kfy XMBZ018)。
文摘Two-dimensional(2D) ternary materials have sprung up in a broad variety of optoelectronic applications due to their robust degree of freedom to design the physical properties of the materials through adjusting the stoichiometric ratio. However, the controlled growth of high-quality 2D ternary materials with good chemical stoichiometry remains challenging, which severely impedes their further development and future device applications. Herein, we synthesize ternary Bi_(2)Te_(2)Se(BTS) flakes with a thickness down to 4 nm and a lateral dimension about 60 μm by an atmospheric-pressure solid source thermal evaporation method on a mica substrate. The phonon vibration and electrical transportation of 2D BTS are respectively investigated by temperature-dependent Raman spectrum and conductivity measurements. Furthermore, the photodetector based on 2D BTS exhibits excellent performance with a high light on/off ratio of 1300(365 nm), a wide spectral response range from 365 to 980 nm, and an ultra-fast response speed up to 2 μs. In addition, its electrical and photoelectric properties can be modulated by the gate voltage, offering an improved infrared responsivity to 2.74 A W^(-1) and an on/off ratio of 2266 under 980 nm. This work introduces an effective approach to obtain 2D BTS flakes and demonstrates their excellent prospects in optoelectronics.
基金supported by the Foundation of Beijing Municipal Committee of CPC Organization Department(No.2012D005002000001)the Talents of North China University of Technology(No.CCXZ201307)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.CIT&TCD201304001)
文摘Based on the transfer matrix method,a detailed theoretical and numerical study on double-phase-shifted fiber Bragg grating(FBG)is investigated.Temporal responses of the double-phase-shifted FBG to optical pulse are analyzed and the influence of the two phase-shifts’position on the reflected output pulse is evaluated.Results demonstrate that very different temporal pulse waveforms can be achieved by adjusting the length ratio(α=L2/L1).Specifically,a transform-limited Gaussian input optical pulse can be shaped into flat-top square pulse(α=1.81)or two identical optical pulse sequences(α=1.93).