The crystal phase, morphology and facet significantly influence the catalytic and photocat- alytic activity of TiO2. In view of optimizing the performance of catalysts, extensive efforts have been devoted to designing...The crystal phase, morphology and facet significantly influence the catalytic and photocat- alytic activity of TiO2. In view of optimizing the performance of catalysts, extensive efforts have been devoted to designing new sophisticate TiO2 structures with desired facet exposure, necessitating the understanding of chemical properties of individual surface. In this work, we have examined the photooxidation of methanol on TiO 2 (011)- ( 2 × 1 ) and TiO 2 (110) - (1 ×1) by two-photon photoemission spectroscopy (2PPE). An excited state at 2.5 eV above the Fermi level (EF) on methanol covered (011) and (110) interface has been detected. The excited state is an indicator of reduction of TiO2 interface. Irradiation dependence of the excited resonance signal during the photochemistry of methanol on TiO2(011)-(2×1) and TiO2(110)-(1× 1) is ascribed to the interface reduction by producing surface hydroxyls. The reaction rate of photooxidation of methanol on TiO2(110)-(1× 1) is about 11.4 times faster than that on TiO2(011)-(2×1), which is tentatively explained by the difference in the surface atomic configuration. This work not only provides a detailed characterization of the electronic structure of methanol/TiO2 interface by 2PPE, but also shows the importance of the surface structure in the photoreactivity on TiO2.展开更多
Direct Z-scheme CdO-CdS 1-dimensional nanorod arrays were constructed through a facile and simple hydrothermal process. The structure, morphology, photoelectrochemical properties and H2 evolution activity of this cata...Direct Z-scheme CdO-CdS 1-dimensional nanorod arrays were constructed through a facile and simple hydrothermal process. The structure, morphology, photoelectrochemical properties and H2 evolution activity of this catalyst were investigated systematically. The morphology of the obtained nanorod is a regular hexagonal prism with 100-200 nm in diameter. The calcination temperature and time were optimized carefully to achieve the highest photoelectrochemical performance. The as-fabricated hybrid system achieved a photocurrent density up to 6.5 mA/cm2 and H2 evolution rate of 240 μmol·cm-2·h-1 at 0 V vs. Ag/AgCl, which is about 2-fold higher than that of the bare CdS nanorod arrays. The PEC performance exceeds those previously reported similar systems. A direct Z-scheme photocatalytic mechanism was proposed based on the structure and photoelectrochemical performance characterization results, which can well explain the high separation efficiency of photoinduced carriers and the excellent redox ability.展开更多
基金This work was supported the Natural Science Foundation of Liaoning Province (No.2015020242), the National Natural Science Foundation of China (No.21203189 and No.21573225), and the State Key Laboratory of Molecular Reaction Dynamics (No.ZZ- 2014-02).
文摘The crystal phase, morphology and facet significantly influence the catalytic and photocat- alytic activity of TiO2. In view of optimizing the performance of catalysts, extensive efforts have been devoted to designing new sophisticate TiO2 structures with desired facet exposure, necessitating the understanding of chemical properties of individual surface. In this work, we have examined the photooxidation of methanol on TiO 2 (011)- ( 2 × 1 ) and TiO 2 (110) - (1 ×1) by two-photon photoemission spectroscopy (2PPE). An excited state at 2.5 eV above the Fermi level (EF) on methanol covered (011) and (110) interface has been detected. The excited state is an indicator of reduction of TiO2 interface. Irradiation dependence of the excited resonance signal during the photochemistry of methanol on TiO2(011)-(2×1) and TiO2(110)-(1× 1) is ascribed to the interface reduction by producing surface hydroxyls. The reaction rate of photooxidation of methanol on TiO2(110)-(1× 1) is about 11.4 times faster than that on TiO2(011)-(2×1), which is tentatively explained by the difference in the surface atomic configuration. This work not only provides a detailed characterization of the electronic structure of methanol/TiO2 interface by 2PPE, but also shows the importance of the surface structure in the photoreactivity on TiO2.
基金supported by the National Natural Science Foundation of China(No.U1632273,No.21673214,No.U1732272,and No.U1832165)
文摘Direct Z-scheme CdO-CdS 1-dimensional nanorod arrays were constructed through a facile and simple hydrothermal process. The structure, morphology, photoelectrochemical properties and H2 evolution activity of this catalyst were investigated systematically. The morphology of the obtained nanorod is a regular hexagonal prism with 100-200 nm in diameter. The calcination temperature and time were optimized carefully to achieve the highest photoelectrochemical performance. The as-fabricated hybrid system achieved a photocurrent density up to 6.5 mA/cm2 and H2 evolution rate of 240 μmol·cm-2·h-1 at 0 V vs. Ag/AgCl, which is about 2-fold higher than that of the bare CdS nanorod arrays. The PEC performance exceeds those previously reported similar systems. A direct Z-scheme photocatalytic mechanism was proposed based on the structure and photoelectrochemical performance characterization results, which can well explain the high separation efficiency of photoinduced carriers and the excellent redox ability.