Light induced changes in a-Si∶H films are investigated by transient photoconductivity.The transient photoconductivity decay data can neither be fit well by common power-law for transient photocurrent in amorphous sem...Light induced changes in a-Si∶H films are investigated by transient photoconductivity.The transient photoconductivity decay data can neither be fit well by common power-law for transient photocurrent in amorphous semiconductors,nor by stretched exponential rule for transient decay from the steady state in photoconductivity.Instead,the data are fit fairly well with a sum of two exponential functions.The results show that the long time decay is governed by deep traps rather than band tail states,and two different traps locating separately at 0.52 and 0.59eV below E _c are responsible for the two exponential functions.They are designated as negatively charged dangling bond D - centers.The light-induced changes in photoconductivity are attributed mainly to the decrease in electron lifetime caused by the increase of recombination centers after light soaking.展开更多
With the continuous development of electronic industry, people’s demand for semiconductor materials is also increasing. How to prepare semiconductor materials with low cost, low energy consumption and high yield has ...With the continuous development of electronic industry, people’s demand for semiconductor materials is also increasing. How to prepare semiconductor materials with low cost, low energy consumption and high yield has become one of the hot spots of research. ZnTe is commonly used in the semiconductor industry due to its superior optoelectronic properties. Electrochemical deposition is one of the most frequently used methods to prepare ZnTe thin films. However,the traditional electrochemical deposition technology has many shortcomings, such as slow deposition rate and poor film quality. These hinder the large-scale promotion of zinc telluride electrochemical deposition technology. To solve the problems encountered in the preparation of semiconductor thin films by conventional electrochemical deposition, and based on the photoconductive properties of semiconductor materials themselves, the basic principles of photoelectrochemistry of semiconductor electrodes, and some characteristics of the electrochemical deposition process of semiconductor materials, the use of photoelectrochemical deposition method for the preparation of semiconductor materials was proposed. Firstly, the electrochemical behaviors(electrode reactions, nucleation growth and charge transport process) of the ZnTe electrodeposition under illumination and dark state conditions were studied. Then, the potentiostatic deposition of ZnTe was carried out under light and dark conditions. The phase structure, morphology and composition of the sediments were studied using X-ray diffractometer, scanning electron microscope and other testing methods. Finally, the photoelectrochemical deposition mechanisms were analyzed. Compared with conventional electrochemical deposition, photoelectrochemical deposition increases the current density during deposition and reduces the charge transfer impedance during ZnTe deposition process. In addition, since light illumination promotes the deposition of the difficult-to-deposit element Zn, the component ratio of ZnTe thin films prepared by photoelectrochemical deposition is closer to 1:1, making it a viable and reliable approach for ZnTe production.展开更多
SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with g...SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with good crystallization and big grain size. The conductivity of the films was measured by photoelectrochemical test. It is proved that the SnS:Ag films are p-type of semiconductor. Hall measurement shows that the carrier concentration of the films increases, while their resistivity decreases after Ag-doping.展开更多
Reduction of graphene oxide (GO) is a promising low-cost synthetic approach to bulk graphene, which offers an accessible route to transparent conducting films and flexible electronics. Unfortunately, the release of ...Reduction of graphene oxide (GO) is a promising low-cost synthetic approach to bulk graphene, which offers an accessible route to transparent conducting films and flexible electronics. Unfortunately, the release of oxygen-containing functional groups inevitably leaves behind vacancies and topological defects on the reduced GO sheet, and its low electrical conductivity hinders the development of practical applications. Here, we present a strategy for real-time repair of the newborn vacancies with carbon radicals produced by thermal decomposition of a suitable precursor. The sheet conductivity of thus-obtained single-layer graphene was raised more than six-fold to 350-410 S/cm (whilst retaining 〉96% transparency). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy revealed that the conductivity enhancement can be attributed to the formation of additional sp2-C structures. This method provides a simple and efficient process for obtaining highly conductive transparent graphene films.展开更多
Dip-coating is a low-cost,high-throughput technique for the deposition of organic semiconductors over large area on various substrates.Tremendous studies have been done and many parameters such as withdrawal speed,sol...Dip-coating is a low-cost,high-throughput technique for the deposition of organic semiconductors over large area on various substrates.Tremendous studies have been done and many parameters such as withdrawal speed,solvent type and solution concentration have been investigated.However,most of the depositions were ribbons or dendritic crystals with low coverage of the substrate due to the ignorance of the critical role of dynamic solution-substrate interactions during dip-coating.In this study,meniscus angle(MA)was proposed to quantify the real-time in-situ solutionsubstrate interactions during dip-coating.By proper surface treatment of the substrate,the value of MA can be tuned and centimeter-sized,continuous and highly ordered organic semiconductor thin films were achieved.The charge transport properties of the continuous thin films were investigated by the construction of organic field-effect transistors.Maximum(average)hole mobility up to 11.9(5.1)cm2V-1s-1was obtained.The average mobility was 82%higher than that of ribbon crystals,indicating the high crystallinity of the thin films.Our work reveals the critical role of dynamic solutionsubstrate interactions during dip-coating.The ability to produce large-area,continuous and highly ordered organic semiconductor thin films by dip-coating could revival the old technique for the application in various optoelectronics.展开更多
In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. Th...In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%----67.9% at 380---780 nm, and the sheet resistance is 30 f~/n which is equivalent to that of commercial indium tin oxide (1TO). During cyclic bending tests to 500 cycles with bending radius of 5 ram, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transpar- ent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).展开更多
文摘Light induced changes in a-Si∶H films are investigated by transient photoconductivity.The transient photoconductivity decay data can neither be fit well by common power-law for transient photocurrent in amorphous semiconductors,nor by stretched exponential rule for transient decay from the steady state in photoconductivity.Instead,the data are fit fairly well with a sum of two exponential functions.The results show that the long time decay is governed by deep traps rather than band tail states,and two different traps locating separately at 0.52 and 0.59eV below E _c are responsible for the two exponential functions.They are designated as negatively charged dangling bond D - centers.The light-induced changes in photoconductivity are attributed mainly to the decrease in electron lifetime caused by the increase of recombination centers after light soaking.
基金Project(51774341) supported by the National Natural Science Foundation of ChinaProject(2018GK4001) supported by the Science and Technology Tackling and Transformation of Major Scientific and Technological Achievements Project of Hunan Province,China。
文摘With the continuous development of electronic industry, people’s demand for semiconductor materials is also increasing. How to prepare semiconductor materials with low cost, low energy consumption and high yield has become one of the hot spots of research. ZnTe is commonly used in the semiconductor industry due to its superior optoelectronic properties. Electrochemical deposition is one of the most frequently used methods to prepare ZnTe thin films. However,the traditional electrochemical deposition technology has many shortcomings, such as slow deposition rate and poor film quality. These hinder the large-scale promotion of zinc telluride electrochemical deposition technology. To solve the problems encountered in the preparation of semiconductor thin films by conventional electrochemical deposition, and based on the photoconductive properties of semiconductor materials themselves, the basic principles of photoelectrochemistry of semiconductor electrodes, and some characteristics of the electrochemical deposition process of semiconductor materials, the use of photoelectrochemical deposition method for the preparation of semiconductor materials was proposed. Firstly, the electrochemical behaviors(electrode reactions, nucleation growth and charge transport process) of the ZnTe electrodeposition under illumination and dark state conditions were studied. Then, the potentiostatic deposition of ZnTe was carried out under light and dark conditions. The phase structure, morphology and composition of the sediments were studied using X-ray diffractometer, scanning electron microscope and other testing methods. Finally, the photoelectrochemical deposition mechanisms were analyzed. Compared with conventional electrochemical deposition, photoelectrochemical deposition increases the current density during deposition and reduces the charge transfer impedance during ZnTe deposition process. In addition, since light illumination promotes the deposition of the difficult-to-deposit element Zn, the component ratio of ZnTe thin films prepared by photoelectrochemical deposition is closer to 1:1, making it a viable and reliable approach for ZnTe production.
基金supported by the Depart ment of Science & Technology of Fujian Province(Nos.2008I0019,2006F5062,2006J0032)the Fuzhou University(Nos.K-081005,XRC-0736)~~
文摘SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with good crystallization and big grain size. The conductivity of the films was measured by photoelectrochemical test. It is proved that the SnS:Ag films are p-type of semiconductor. Hall measurement shows that the carrier concentration of the films increases, while their resistivity decreases after Ag-doping.
基金This work was supported by the National Natural Science Foundation of China (Grants Nos. 50802003, 20973013, 51072004, 50821061, and 20973006) and Ministry of Science and Technology of the people's Republic of China (Grants Nos. 2007CB936203, 2006CBP32602, and 2009CB929403).
文摘Reduction of graphene oxide (GO) is a promising low-cost synthetic approach to bulk graphene, which offers an accessible route to transparent conducting films and flexible electronics. Unfortunately, the release of oxygen-containing functional groups inevitably leaves behind vacancies and topological defects on the reduced GO sheet, and its low electrical conductivity hinders the development of practical applications. Here, we present a strategy for real-time repair of the newborn vacancies with carbon radicals produced by thermal decomposition of a suitable precursor. The sheet conductivity of thus-obtained single-layer graphene was raised more than six-fold to 350-410 S/cm (whilst retaining 〉96% transparency). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy revealed that the conductivity enhancement can be attributed to the formation of additional sp2-C structures. This method provides a simple and efficient process for obtaining highly conductive transparent graphene films.
基金financial support from the National Natural Science Foundation of China(51873148,61674116 and 51633006)the Ministry of Science and Technology of China(2016YFA0202302)the Natural Science Foundation of Tianjin(18JC-YBJC18400)。
文摘Dip-coating is a low-cost,high-throughput technique for the deposition of organic semiconductors over large area on various substrates.Tremendous studies have been done and many parameters such as withdrawal speed,solvent type and solution concentration have been investigated.However,most of the depositions were ribbons or dendritic crystals with low coverage of the substrate due to the ignorance of the critical role of dynamic solution-substrate interactions during dip-coating.In this study,meniscus angle(MA)was proposed to quantify the real-time in-situ solutionsubstrate interactions during dip-coating.By proper surface treatment of the substrate,the value of MA can be tuned and centimeter-sized,continuous and highly ordered organic semiconductor thin films were achieved.The charge transport properties of the continuous thin films were investigated by the construction of organic field-effect transistors.Maximum(average)hole mobility up to 11.9(5.1)cm2V-1s-1was obtained.The average mobility was 82%higher than that of ribbon crystals,indicating the high crystallinity of the thin films.Our work reveals the critical role of dynamic solutionsubstrate interactions during dip-coating.The ability to produce large-area,continuous and highly ordered organic semiconductor thin films by dip-coating could revival the old technique for the application in various optoelectronics.
基金supported by the National Natural Science Foundation of China(No.21174036)the National High Technology Research and Development Program of China(No.2012AA011901)the National Basic Research Program of China(No.2012CB723406)
文摘In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%----67.9% at 380---780 nm, and the sheet resistance is 30 f~/n which is equivalent to that of commercial indium tin oxide (1TO). During cyclic bending tests to 500 cycles with bending radius of 5 ram, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transpar- ent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).