分别用聚合物辅助沉积法和金属有机物分解法制备了WO_3和BiVO_4半导体薄膜电极。利用固体紫外-可见漫反射光谱、电化学阻抗和线性扫描伏安法,对WO_3和BiVO_4半导体薄膜电极的能带结构进行了表征。制备了WO_3/BiVO_4异质结复合光电极,并...分别用聚合物辅助沉积法和金属有机物分解法制备了WO_3和BiVO_4半导体薄膜电极。利用固体紫外-可见漫反射光谱、电化学阻抗和线性扫描伏安法,对WO_3和BiVO_4半导体薄膜电极的能带结构进行了表征。制备了WO_3/BiVO_4异质结复合光电极,并通过扫描电子显微镜、X射线衍射和X射线光电子能谱,对该复合光电极的断面形貌、晶型结构和物质组成进行了分析。最后,对WO_3/BiVO_4复合光电极的光电转化性能进行了研究。研究结果表明:均为单斜晶型的WO_3和BiVO_4之间形成了膜厚约为450 nm的II型异质结;在施加相对于可逆氢电极1.23 V的电势时,WO_3/BiVO_4光电极的光电流密度可以达到1.926 m A/cm^2,表现出了良好的光电转化性能。展开更多
文摘分别用聚合物辅助沉积法和金属有机物分解法制备了WO_3和BiVO_4半导体薄膜电极。利用固体紫外-可见漫反射光谱、电化学阻抗和线性扫描伏安法,对WO_3和BiVO_4半导体薄膜电极的能带结构进行了表征。制备了WO_3/BiVO_4异质结复合光电极,并通过扫描电子显微镜、X射线衍射和X射线光电子能谱,对该复合光电极的断面形貌、晶型结构和物质组成进行了分析。最后,对WO_3/BiVO_4复合光电极的光电转化性能进行了研究。研究结果表明:均为单斜晶型的WO_3和BiVO_4之间形成了膜厚约为450 nm的II型异质结;在施加相对于可逆氢电极1.23 V的电势时,WO_3/BiVO_4光电极的光电流密度可以达到1.926 m A/cm^2,表现出了良好的光电转化性能。