Porous silver-modified ZnO microrods photocatalysts were synthesized through direct thermal decomposition of the Ag-doped zinctartrate precursor,which was prepared by homogeneous precipitation method at 80 °C for...Porous silver-modified ZnO microrods photocatalysts were synthesized through direct thermal decomposition of the Ag-doped zinctartrate precursor,which was prepared by homogeneous precipitation method at 80 °C for 2 h.The obtained samples were characterized by XRD,FTIR,TG?DTA and UV-VIS absorption spectroscopy.The photocatalytic activity of the as-prepared porous Ag/ZnO microrods was tested with the photocatalytic degradation of methyl orange.The results indicate that doping Ag greatly improves the photocatalytic efficiency of ZnO and 3% Ag-doped(mole fraction) ZnO porous microrod photocatalyst exhibits the highest photocatalytic decolorization efficiency,leading to as much as 80% reduction of MO concentration in 120 min.Moreover,the 3% Ag-doped porous microrods also possess higher photocatalytic activity under the real sunlight irradiation.展开更多
The rare earth ternary complex of Eu 3+ with thenoyltrifluoroacetone,and 4,7-2NH2 phenanthroline was synthesized and well characterized by UV,fluorescent,IR spectrometry and X-ray diffractometry(XRD)as well as element...The rare earth ternary complex of Eu 3+ with thenoyltrifluoroacetone,and 4,7-2NH2 phenanthroline was synthesized and well characterized by UV,fluorescent,IR spectrometry and X-ray diffractometry(XRD)as well as elemental analysis.The results show that the complex of Eu(III)emits strong red luminescence when excited by UV light,and Eu(TTA)3(2NH2-Phen)has the higher sensitized luminescent efficiency and longer lifetime than Eu(TTA)3(Phen).In device of ITO/PVK/Eu(TTA)3(2NH2-Phen)/Al,the spectra of Eu(TTA)3(2NH2-Phen)with different ratios for spin-cast film were monitored.The main emitting peak at 614 nm can be attributed to the transition of 5 D0→ 7 F2 of Eu 3+ and this process results in the enhancement of red emission from electroluminescence device.The effect and mechanism of the ligands on the luminescence properties of europium complex were discussed.The results show that the luminescence intensity of the title complexes greatly increases in comparison with that of their corresponding complexes,revealing that the second ligands form very good synergistic effect with the first ligands.The title complexes possess excellent thermal stability properties,and are hopefully developed into fine PL and EL red materials.展开更多
A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structu...A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structure,optical,and photocatalytic properties of the composite were characterized.The results showed that the composite had a sheet flower-like structure with a large specific surface area.Ultraviolet-visible diffuse reflection spectra and photoluminescence spectra showed that the composite had an excellent visible-light response and a low recombination rate of photoinduced electron hole pairs.The photocatalytic property of the composite was evaluated by the removal efficiency of rhodamine B and ciprofloxacin under visible-light illumination.The composite’s reaction rate constant of removing rhodamine B(/ciprofloxacin)was approximately 8.14(/4.94),42.63(/11.91)and 64.66(/36.07)times that of Bi12O17Cl2,P25,and BiOCl,respectively.Furthermore,the composite showed a wide applicable pH range and excellent reusability.Mechanism analysis showed that photogenerated holes played a dominant role and·O2–also contributed to photocatalytic degradation.In summary,this study presents a high-efficiency photocatalyst for wastewater treatment.展开更多
Polypropylene fibers have been extensively used in a variety of/products, including carpets and upholstery, due to their non-absorbency, good weather resistance, good resistance to macroorgamsms and so on. Because of ...Polypropylene fibers have been extensively used in a variety of/products, including carpets and upholstery, due to their non-absorbency, good weather resistance, good resistance to macroorgamsms and so on. Because of their hydrophobic and highly crystalline nature, those well-established conventionai dyeing processes are difficult to apply to unmodified polypropylene. Colors of polypropylene fibers are primarily obtained by mass coloration which has the disadvantages of limited number of colors available and difficulties in inventory control due to the rapidly changing color needs of the market. In this paper, the use of vat dyes to dye polypropylene fabrics is investigated. Seventeen vat dyes were screened and factors influencing uptake of dyes by polypropylene fabrics were studied.展开更多
年轻的德国设计师Camilla Richter相信:任何事物都在不停地运转,虚如思想.实若微粒;所以.任何东西都不可能永恒存在.就像是我们意识到"时间"的存在.仅是因为地球围绕着太阳转.倘若有一天公转、自转消失,我们所谓的"时间&...年轻的德国设计师Camilla Richter相信:任何事物都在不停地运转,虚如思想.实若微粒;所以.任何东西都不可能永恒存在.就像是我们意识到"时间"的存在.仅是因为地球围绕着太阳转.倘若有一天公转、自转消失,我们所谓的"时间"也会不见踪影。Camilla将这个想法付诸行动.她创作了一个名为"And A And Be And Not"的可折叠屏风.并称它为"心情的光影机"。展开更多
A photochromic rhodamine B-based material containing Cd(Ⅱ) as bridge was facilely prepared. The 4-methoxylsalicylalde hyde rhodamine B bydrazone Cd(Ⅱ) complex displayed unusual ring-open response upon 365 nm UV ...A photochromic rhodamine B-based material containing Cd(Ⅱ) as bridge was facilely prepared. The 4-methoxylsalicylalde hyde rhodamine B bydrazone Cd(Ⅱ) complex displayed unusual ring-open response upon 365 nm UV irradiation, exhibiting long photochromic lifetime and good fatigue resistance. The UV-induced ring-open of the complex led to a distinct color and fluorescence change in acetonitrile. A new mechanism was put forward: salicylaldehyde part in the complex underwent UV-promoted isomerization from enol-form to keto-form, enhancing the chelation of Cd(Ⅱ) and yielding the ring-opening rhodamine B part. Compared to other reported photochromic systems, this new photochromic material offered attractive new insights into the development of low cost photochromic materials with good performance.展开更多
Laboratory discovery of new phosphors for white-light light-emitting diodes (WLEDs) is still an im- perative challenge. A new yellow-emitting Sr9MgLi(PO4)7:Eu^2+ phosphor was discovered based on the mineral-insp...Laboratory discovery of new phosphors for white-light light-emitting diodes (WLEDs) is still an im- perative challenge. A new yellow-emitting Sr9MgLi(PO4)7:Eu^2+ phosphor was discovered based on the mineral-inspired pro- totype evolution and new phase construction strategy pro- posed by our group. Sr9MgLi(PO4)7:Eu^2+ has been synthesized by using a high temperature solid-state method, and its phase structure and luminescence properties have been investigated in detail, and applied in WLED lamp. Sr9MgLi(PO4)7 phase is derived from the ]3-Ca3(PO4)2-type mineral structure. Upon 365 nm UV light excitation, the SrgMgLi(PO4)7:Eu^2+ phosphor exhibits a broad emission band from 450 nm to 700 nm. The white-light LED lamp was fabricated based on the phosphor blends of the composition-optimized yellow-emitting Sr9MgLi (PO4)7:Eu2+ and commercial blue-emitting BaMgAl10O17:Eu^2+, and a 365 nm UV chip was used as the excitation source. The Ra, CCT value and CIE of the as-fabricated LEDs were found to be 83, 5,612 K, and (0.324, 0.358), respectively. All the results indicate that Sr9MgLi(PO4)7:Eu^2+ could be potential in the development of UV-pumped white-light LEDs.展开更多
Luminescent materials exhibiting emission switching in the solid state have drawn much attention though there is still no clear design strategy for such materials. In this letter, we reported the crystallization induc...Luminescent materials exhibiting emission switching in the solid state have drawn much attention though there is still no clear design strategy for such materials. In this letter, we reported the crystallization induced emission enhancement (CIEE) of di(4-ethoxyphenyl)dibenzofulvene (1), and achieved switching its emission among four different colors through modulation of its molecular packing patterns. We have investigated its potential application as optical recording materials. The twisted conformations of CIEE compounds afford morphology dependent emission and facilitate tuning their emission through modulation of molecular packing patterns. Thus we provide a possible design strategy for solid stimulus responsive luminescent materials.展开更多
Diarylethene derivatives are a class of fascinating photochromic materials because of their open and closed isomers with different absorption spectra and many other characteristics.To reveal the detailed structure and...Diarylethene derivatives are a class of fascinating photochromic materials because of their open and closed isomers with different absorption spectra and many other characteristics.To reveal the detailed structure and optoelectronic properties as well as the effect of metal centres and substituents on them,a systematic study on a series of diarylethene derivatives and their Re(I),Pt(II),and Ir(III) complexes was performed via theoretical calculation.The optimized geometries,electronic properties,frontier molecular orbitals,ionization potentials,electron affinities,reorganization energies,and absorption spectra for both of their open-and closed-isomers have been calculated and analyzed.Metal-coordination and substituents exhibit great influence on the photophysical,charge-injection and-transporting characteristics.In addition,the binding of F-with the boron atom of dimesitylboryl group through Lewis acid/base interactions also induces great changes of structural,photophysical and electronic properties for these diarylethene derivatives,and consequently the compound with the substituent of dimesitylboryl group can be used as selective near-infrared phosphorescent F-probe.展开更多
A high-sensitivity metal-coated long-period fiber grating(LPFG) sensor based on material dispersion is designed.Based on the coupled mode theory,the influence of the material dispersion on the dual-peak characteristic...A high-sensitivity metal-coated long-period fiber grating(LPFG) sensor based on material dispersion is designed.Based on the coupled mode theory,the influence of the material dispersion on the dual-peak characteristics of the metal-coated LPFG is studied.After considering the material dispersion,the jumping region of the dual-resonant-wavelength shifts toward the thinner film thickness,and the sensitivity of the dual-peak metal-coated LPFG sensor to liquid refractive index(RI) can be obtained to supply accurate parameter combinations.Experimentally,two kinds of silver-coated LPFGs with different film thicknesses and grating periods are fabricated to monitor the salt solution,and the sensitivities of these two sensors are compared.The experimental results are consistent with the theoretical analyses.展开更多
Colloidal quantum dots(QDs)are a unique class of emissive materials with size-tunable emission wavelengths,saturated emission colors,near-unity luminance efficiency,inherent photo-and thermal-stability,and excellent s...Colloidal quantum dots(QDs)are a unique class of emissive materials with size-tunable emission wavelengths,saturated emission colors,near-unity luminance efficiency,inherent photo-and thermal-stability,and excellent solution processability.Display based on quantum-dot light-emitting diodes(QLED)may combine the superior properties of QDs,the benefits of solution-based fabrication techniques,and the advantages of self-emission devices,which promises an unprecedented generation of cost-effective,large-area,energysaving,wide-color-gamut,ultra-thin and flexible displays.展开更多
基金Project (20907001) supported by the National Natural Science Foundation of ChinaProject (KJ2010A336) supported by the University Natural Science Research Project of Anhui Province,ChinaProject (KJ2009A010Z) supported by the Educational Commission of Anhui Province,China
文摘Porous silver-modified ZnO microrods photocatalysts were synthesized through direct thermal decomposition of the Ag-doped zinctartrate precursor,which was prepared by homogeneous precipitation method at 80 °C for 2 h.The obtained samples were characterized by XRD,FTIR,TG?DTA and UV-VIS absorption spectroscopy.The photocatalytic activity of the as-prepared porous Ag/ZnO microrods was tested with the photocatalytic degradation of methyl orange.The results indicate that doping Ag greatly improves the photocatalytic efficiency of ZnO and 3% Ag-doped(mole fraction) ZnO porous microrod photocatalyst exhibits the highest photocatalytic decolorization efficiency,leading to as much as 80% reduction of MO concentration in 120 min.Moreover,the 3% Ag-doped porous microrods also possess higher photocatalytic activity under the real sunlight irradiation.
基金Project(B201015)supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(11551482)supported by the Scientific and Technical Research Project of Education Department of Heilongjiang Province,China+3 种基金Projects(L2010-124,L2010-144)supported by the Research Fund for Jiamusi University,ChinaProject(E08050204)supported by the Research Fund for the Provincial Key Laboratory of Biomaterials Jiamusi University,ChinaProject(2009-360)supported by Health Commission of Heilongjiang Province,ChinaProject supported by Key Laboratory of Luminescence and Optical Information,Beijing Jiaotong University,China
文摘The rare earth ternary complex of Eu 3+ with thenoyltrifluoroacetone,and 4,7-2NH2 phenanthroline was synthesized and well characterized by UV,fluorescent,IR spectrometry and X-ray diffractometry(XRD)as well as elemental analysis.The results show that the complex of Eu(III)emits strong red luminescence when excited by UV light,and Eu(TTA)3(2NH2-Phen)has the higher sensitized luminescent efficiency and longer lifetime than Eu(TTA)3(Phen).In device of ITO/PVK/Eu(TTA)3(2NH2-Phen)/Al,the spectra of Eu(TTA)3(2NH2-Phen)with different ratios for spin-cast film were monitored.The main emitting peak at 614 nm can be attributed to the transition of 5 D0→ 7 F2 of Eu 3+ and this process results in the enhancement of red emission from electroluminescence device.The effect and mechanism of the ligands on the luminescence properties of europium complex were discussed.The results show that the luminescence intensity of the title complexes greatly increases in comparison with that of their corresponding complexes,revealing that the second ligands form very good synergistic effect with the first ligands.The title complexes possess excellent thermal stability properties,and are hopefully developed into fine PL and EL red materials.
基金supported by National Water Pollution Control and Treatment Science and Technology Major Project(2018ZX07110003)Key Research and Development Project of Shandong Province(2018CXGC1007)~~
文摘A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structure,optical,and photocatalytic properties of the composite were characterized.The results showed that the composite had a sheet flower-like structure with a large specific surface area.Ultraviolet-visible diffuse reflection spectra and photoluminescence spectra showed that the composite had an excellent visible-light response and a low recombination rate of photoinduced electron hole pairs.The photocatalytic property of the composite was evaluated by the removal efficiency of rhodamine B and ciprofloxacin under visible-light illumination.The composite’s reaction rate constant of removing rhodamine B(/ciprofloxacin)was approximately 8.14(/4.94),42.63(/11.91)and 64.66(/36.07)times that of Bi12O17Cl2,P25,and BiOCl,respectively.Furthermore,the composite showed a wide applicable pH range and excellent reusability.Mechanism analysis showed that photogenerated holes played a dominant role and·O2–also contributed to photocatalytic degradation.In summary,this study presents a high-efficiency photocatalyst for wastewater treatment.
基金Supported by Consortiumon Competitiveness for the Apparel , Carpet ,and Textile Industries (CCACTI)
文摘Polypropylene fibers have been extensively used in a variety of/products, including carpets and upholstery, due to their non-absorbency, good weather resistance, good resistance to macroorgamsms and so on. Because of their hydrophobic and highly crystalline nature, those well-established conventionai dyeing processes are difficult to apply to unmodified polypropylene. Colors of polypropylene fibers are primarily obtained by mass coloration which has the disadvantages of limited number of colors available and difficulties in inventory control due to the rapidly changing color needs of the market. In this paper, the use of vat dyes to dye polypropylene fabrics is investigated. Seventeen vat dyes were screened and factors influencing uptake of dyes by polypropylene fabrics were studied.
文摘年轻的德国设计师Camilla Richter相信:任何事物都在不停地运转,虚如思想.实若微粒;所以.任何东西都不可能永恒存在.就像是我们意识到"时间"的存在.仅是因为地球围绕着太阳转.倘若有一天公转、自转消失,我们所谓的"时间"也会不见踪影。Camilla将这个想法付诸行动.她创作了一个名为"And A And Be And Not"的可折叠屏风.并称它为"心情的光影机"。
基金financially supported by the National Natural Science Foundation of China(21175079 and 21375074)
文摘A photochromic rhodamine B-based material containing Cd(Ⅱ) as bridge was facilely prepared. The 4-methoxylsalicylalde hyde rhodamine B bydrazone Cd(Ⅱ) complex displayed unusual ring-open response upon 365 nm UV irradiation, exhibiting long photochromic lifetime and good fatigue resistance. The UV-induced ring-open of the complex led to a distinct color and fluorescence change in acetonitrile. A new mechanism was put forward: salicylaldehyde part in the complex underwent UV-promoted isomerization from enol-form to keto-form, enhancing the chelation of Cd(Ⅱ) and yielding the ring-opening rhodamine B part. Compared to other reported photochromic systems, this new photochromic material offered attractive new insights into the development of low cost photochromic materials with good performance.
基金supported by the National Natural Science Foundation of China (51722202, 91622125 and 51572023)Natural Science Foundation of Beijing (2172036)
文摘Laboratory discovery of new phosphors for white-light light-emitting diodes (WLEDs) is still an im- perative challenge. A new yellow-emitting Sr9MgLi(PO4)7:Eu^2+ phosphor was discovered based on the mineral-inspired pro- totype evolution and new phase construction strategy pro- posed by our group. Sr9MgLi(PO4)7:Eu^2+ has been synthesized by using a high temperature solid-state method, and its phase structure and luminescence properties have been investigated in detail, and applied in WLED lamp. Sr9MgLi(PO4)7 phase is derived from the ]3-Ca3(PO4)2-type mineral structure. Upon 365 nm UV light excitation, the SrgMgLi(PO4)7:Eu^2+ phosphor exhibits a broad emission band from 450 nm to 700 nm. The white-light LED lamp was fabricated based on the phosphor blends of the composition-optimized yellow-emitting Sr9MgLi (PO4)7:Eu2+ and commercial blue-emitting BaMgAl10O17:Eu^2+, and a 365 nm UV chip was used as the excitation source. The Ra, CCT value and CIE of the as-fabricated LEDs were found to be 83, 5,612 K, and (0.324, 0.358), respectively. All the results indicate that Sr9MgLi(PO4)7:Eu^2+ could be potential in the development of UV-pumped white-light LEDs.
基金the National Natural Science Foundation of China (51173018)the National Basic Research Program of China (973 program, 2013CB834704)
文摘Luminescent materials exhibiting emission switching in the solid state have drawn much attention though there is still no clear design strategy for such materials. In this letter, we reported the crystallization induced emission enhancement (CIEE) of di(4-ethoxyphenyl)dibenzofulvene (1), and achieved switching its emission among four different colors through modulation of its molecular packing patterns. We have investigated its potential application as optical recording materials. The twisted conformations of CIEE compounds afford morphology dependent emission and facilitate tuning their emission through modulation of molecular packing patterns. Thus we provide a possible design strategy for solid stimulus responsive luminescent materials.
基金supported by the National Basic Research Program of China (973 Program,2009CB930601 and 2012CB933301)National Natural Science Foundation of China (21174064,21171098)+4 种基金Natural Science Fund for Colleges and Universities in Jiangsu Province(10KJB430010)the Ministry of Education of China (IRT1148)Key Projects in Jiangsu Province for International Cooperation (BZ2010043)Nanjing University of Posts and Telecommunications (NY210029)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Diarylethene derivatives are a class of fascinating photochromic materials because of their open and closed isomers with different absorption spectra and many other characteristics.To reveal the detailed structure and optoelectronic properties as well as the effect of metal centres and substituents on them,a systematic study on a series of diarylethene derivatives and their Re(I),Pt(II),and Ir(III) complexes was performed via theoretical calculation.The optimized geometries,electronic properties,frontier molecular orbitals,ionization potentials,electron affinities,reorganization energies,and absorption spectra for both of their open-and closed-isomers have been calculated and analyzed.Metal-coordination and substituents exhibit great influence on the photophysical,charge-injection and-transporting characteristics.In addition,the binding of F-with the boron atom of dimesitylboryl group through Lewis acid/base interactions also induces great changes of structural,photophysical and electronic properties for these diarylethene derivatives,and consequently the compound with the substituent of dimesitylboryl group can be used as selective near-infrared phosphorescent F-probe.
基金supported by the National Natural Science Foundation of China(No.60777035)the Scientific Research Key Project Fund(No.208040)+1 种基金the Innovation Program of Shanghai Municipal Education Commission(No.11ZZ131)the Shanghai Leading Academic Discipline Project(No.S30502)
文摘A high-sensitivity metal-coated long-period fiber grating(LPFG) sensor based on material dispersion is designed.Based on the coupled mode theory,the influence of the material dispersion on the dual-peak characteristics of the metal-coated LPFG is studied.After considering the material dispersion,the jumping region of the dual-resonant-wavelength shifts toward the thinner film thickness,and the sensitivity of the dual-peak metal-coated LPFG sensor to liquid refractive index(RI) can be obtained to supply accurate parameter combinations.Experimentally,two kinds of silver-coated LPFGs with different film thicknesses and grating periods are fabricated to monitor the salt solution,and the sensitivities of these two sensors are compared.The experimental results are consistent with the theoretical analyses.
文摘Colloidal quantum dots(QDs)are a unique class of emissive materials with size-tunable emission wavelengths,saturated emission colors,near-unity luminance efficiency,inherent photo-and thermal-stability,and excellent solution processability.Display based on quantum-dot light-emitting diodes(QLED)may combine the superior properties of QDs,the benefits of solution-based fabrication techniques,and the advantages of self-emission devices,which promises an unprecedented generation of cost-effective,large-area,energysaving,wide-color-gamut,ultra-thin and flexible displays.