Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided p...Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.展开更多
A facile method for the synthesis of pillar[6]arenes was developed. A series of pillar[6]arenes were prepared with FeC13 as catalyst and chloroform as solvent at room temperature in moderate yields (30%-40%). Their ...A facile method for the synthesis of pillar[6]arenes was developed. A series of pillar[6]arenes were prepared with FeC13 as catalyst and chloroform as solvent at room temperature in moderate yields (30%-40%). Their host-guest properties with n-cetyltrimethyl ammonium bromide were investigated by 1 HNMR. The results showed that high selectivity in the host-guest relationship became apparent between pillar[6]arenes and pillar[5]arenes based on the different size of the inner cavity.展开更多
基金Project(2011DFB70230)supported by State International Cooperation Program of ChinaProject(N110403003)supported by Basic Research Foundation of Education Ministry of China
文摘Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.
基金supported by the National Natural Science Foundation ofChina (20872038,21072064)
文摘A facile method for the synthesis of pillar[6]arenes was developed. A series of pillar[6]arenes were prepared with FeC13 as catalyst and chloroform as solvent at room temperature in moderate yields (30%-40%). Their host-guest properties with n-cetyltrimethyl ammonium bromide were investigated by 1 HNMR. The results showed that high selectivity in the host-guest relationship became apparent between pillar[6]arenes and pillar[5]arenes based on the different size of the inner cavity.