Understanding the relationship between landscape pattems and ecological processes has been a central yet challenging research theme in landscape ecology. Over the past decades, many landscape metrics have been propose...Understanding the relationship between landscape pattems and ecological processes has been a central yet challenging research theme in landscape ecology. Over the past decades, many landscape metrics have been proposed but few directly incorporated ecological processes. In this paper, we developed a landscape index, namely, location-weighted landscape index (LWLI) to highlight the role of landscape type in ecological processes, such as nutrient losses and soil erosion. Within the framework of the Lorenz curve theory, we develop this index by integrating land- scape pattern and point-based measurements at a watershed scale. The index can be used to characterize the contribution of landscape pattern to ecological processes (e.g. nutrient losses) with respect to a specific monitoring point in a watershed. Through a case study on nutrient losses in an agricultural area in northeastern China, we found that nutrient losses tended to be higher for a watershed with a higher LWLI value, and vice versa. It implied that LWLI can be used to evaluate the potential risk of nutrient losses or soil erosion by comparing their values across watersheds. In addition, this index can be extended to characterize ecological processes, such as the effect of landscape pattern on wildlife inhabitation and urban heat island effect. Finally, we discuss several problems that should be paid attention to when applying this index to a heterogeneous landscape site.展开更多
The soil nutrient losses due to excessive soil loss on Loess Plateau were studied by means of runoff plotsand systematical determination of soil nutrients both in sediments and runoff.The results show that theamounts ...The soil nutrient losses due to excessive soil loss on Loess Plateau were studied by means of runoff plotsand systematical determination of soil nutrients both in sediments and runoff.The results show that theamounts of nutrient losses depended on the amounts of erosion sediments. Along with sediment, 11-197 kgnitrogen/hectare and 9-174 kg phosphorus/hectare were lost, accounting for 92.46-99.47 percent of the totalamount of nitrogen loss and 99.85-99.99 percent of the total amount of phosphorns loss respectively. Thenutrient losses, very small in runoff, were mainly attributed to erosion of a few rainstorms during a year. Thenutrient level in sediment was mostly higher than that in the original soil. Planting grass evidently reducedthe losses of soil nutrients. The N level was lower in runoff than in rainfall so that the N loss from runoffconld be made up by rainfall. Fertilizer application to crops raised the nutrient level in runoff.展开更多
Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not r...Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not return a profit to the farmer due to the high cost of biochar. In this study biochar was modified through pre-treating the biomass and post-treating with phosphoric acid, minerals and different chemical fertilisers to study the effects of two new enhanced biochar fertilisers on the yield and quality of green pepper in a field experiment with 5 fertilisation treatments and 3 replications. The two new biochar fertilisers significantly (P 〈 0.05) increased the yield of green pepper (11.33-11.47 t ha-l), compared with the conventional chemical fertiliser (9.72 t ha-l). The biochar fertiliser treatments improved the vitamin C content of green pepper from 236.99 to 278.28 mg kg-1, and also significantly (P 〈 0.05) reduced the nitrate content from 132.32 to 101.92 mg kg-1, compared with chemical fertiliser. This study indicated that, compared to the use of conventional chemical fertiliser, all of the biochar fertiliser treatments could significantly improve the yield and quality of green pepper.展开更多
基金Under the auspices of Chinese Academy of Sciences (No. KZCX2-YW-421)National Natural Science Foundation of China (No. 40621061, 30570319)
文摘Understanding the relationship between landscape pattems and ecological processes has been a central yet challenging research theme in landscape ecology. Over the past decades, many landscape metrics have been proposed but few directly incorporated ecological processes. In this paper, we developed a landscape index, namely, location-weighted landscape index (LWLI) to highlight the role of landscape type in ecological processes, such as nutrient losses and soil erosion. Within the framework of the Lorenz curve theory, we develop this index by integrating land- scape pattern and point-based measurements at a watershed scale. The index can be used to characterize the contribution of landscape pattern to ecological processes (e.g. nutrient losses) with respect to a specific monitoring point in a watershed. Through a case study on nutrient losses in an agricultural area in northeastern China, we found that nutrient losses tended to be higher for a watershed with a higher LWLI value, and vice versa. It implied that LWLI can be used to evaluate the potential risk of nutrient losses or soil erosion by comparing their values across watersheds. In addition, this index can be extended to characterize ecological processes, such as the effect of landscape pattern on wildlife inhabitation and urban heat island effect. Finally, we discuss several problems that should be paid attention to when applying this index to a heterogeneous landscape site.
文摘The soil nutrient losses due to excessive soil loss on Loess Plateau were studied by means of runoff plotsand systematical determination of soil nutrients both in sediments and runoff.The results show that theamounts of nutrient losses depended on the amounts of erosion sediments. Along with sediment, 11-197 kgnitrogen/hectare and 9-174 kg phosphorus/hectare were lost, accounting for 92.46-99.47 percent of the totalamount of nitrogen loss and 99.85-99.99 percent of the total amount of phosphorns loss respectively. Thenutrient losses, very small in runoff, were mainly attributed to erosion of a few rainstorms during a year. Thenutrient level in sediment was mostly higher than that in the original soil. Planting grass evidently reducedthe losses of soil nutrients. The N level was lower in runoff than in rainfall so that the N loss from runoffconld be made up by rainfall. Fertilizer application to crops raised the nutrient level in runoff.
基金financially supported by the Ministry of Science and Technology of China (Nos.2013GB23600666 and 2013BAD11B00)funded by the Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization,China+1 种基金supported by the grant of the Australian Research Council (No.LP120200418)Renewed Carbon Pty Ltd.,Australia and the project of DAFF Carbon Farming Futures-Filling the Research Gap,Australia (No.RG134978)
文摘Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not return a profit to the farmer due to the high cost of biochar. In this study biochar was modified through pre-treating the biomass and post-treating with phosphoric acid, minerals and different chemical fertilisers to study the effects of two new enhanced biochar fertilisers on the yield and quality of green pepper in a field experiment with 5 fertilisation treatments and 3 replications. The two new biochar fertilisers significantly (P 〈 0.05) increased the yield of green pepper (11.33-11.47 t ha-l), compared with the conventional chemical fertiliser (9.72 t ha-l). The biochar fertiliser treatments improved the vitamin C content of green pepper from 236.99 to 278.28 mg kg-1, and also significantly (P 〈 0.05) reduced the nitrate content from 132.32 to 101.92 mg kg-1, compared with chemical fertiliser. This study indicated that, compared to the use of conventional chemical fertiliser, all of the biochar fertiliser treatments could significantly improve the yield and quality of green pepper.