期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
云环境下改进自回归模型的网络数据去重仿真 被引量:2
1
作者 胡艳华 张春玉 +1 位作者 崔亚楠 倪志平 《计算机仿真》 2024年第1期443-446,536,共5页
云环境网络数据去重过程中,若不能及时对网络数据实施噪声抑制,会直接降低数据的去重效果,为提升数据去重精度,提出基于自回归模型的云环境中网络数据去重算法。建立云环境弹性空间模型,确定网络数据的空间自相关度量值完成数据去噪,基... 云环境网络数据去重过程中,若不能及时对网络数据实施噪声抑制,会直接降低数据的去重效果,为提升数据去重精度,提出基于自回归模型的云环境中网络数据去重算法。建立云环境弹性空间模型,确定网络数据的空间自相关度量值完成数据去噪,基于去噪结果详细分析云环境中网络数据属性特征;根据提取的属性特征对云环境中网络数据聚类处理,结合自回归模型建立网络冗余数据预测模型,精准预测出云环境中的网络冗余数据,并对其进行剔除处理,实现网络数据的精准去重。实验结果表明,使用该方法开展数据去重时能够有效去除网络数据中的冗余数据,去重效果较好。 展开更多
关键词 自回归模型 云环境 网络数据 去重算法 冗余数据预测模型
下载PDF
Climate Precipitation Prediction by Neural Network 被引量:1
2
作者 Juliana Aparecida Anochi Haroldo Fraga de Campos Velho 《Journal of Mathematics and System Science》 2015年第5期207-213,共7页
In this work a neural network model for climate forecasting is presented. The model is built by training a neural network with available reanalysis data. In order to assess the model, the development methodology consi... In this work a neural network model for climate forecasting is presented. The model is built by training a neural network with available reanalysis data. In order to assess the model, the development methodology considers the use of data reduction strategies that eliminate data redundancy thus reducing the complexity of the models. The results presented in this paper considered the use of Rough Sets Theory principles in extracting relevant information from the available data to achieve the reduction of redundancy among the variables used for forecasting purposes. The paper presents results of climate prediction made with the use of the neural network based model. The results obtained in the conducted experiments show the effectiveness of the methodology, presenting estimates similar to observations. 展开更多
关键词 Climate Prediction Neural Networks Rough Sets Theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部