The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive...The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.展开更多
Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Fa...Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.展开更多
In this study, a novel punch toolset was developed to investigate the hot stamping of AA6082-T4 sheet. The effect of the process parameters, including forming temperature, punching velocity, friction coefficient, and ...In this study, a novel punch toolset was developed to investigate the hot stamping of AA6082-T4 sheet. The effect of the process parameters, including forming temperature, punching velocity, friction coefficient, and blank holder force(BHF) on formability was quantified using Taguchi design, analysis of variance(ANOVA) and mathematical statistics. The finite element(FE) model has been established in software Pamstamp for simulation and analysis of their effects on the minimum thickness and thickness variation of the hot-stamped component. The major factors influencing the minimum thickness of the hot-stamped part has been found to be BHF and friction coefficient with influence significance of 35.3% and 34.88%, respectively. Additionally, punch velocity and BHF affect the thickness deviation significantly with influence significance of 40.43% and 35.42%, respectively. Furthermore, a serious thinning occurs on the punch corner region of the hot-stamped cup when the BHF is larger than 2.4 kN. The thickness deviation of the hotformed cup has been found to be firstly decreased and then increased with the increase of punch velocity. Low friction coefficient between punch and blank led to crack at bottom centre of the cup. Moreover, different type, phenomenon and mechanism of defects occurring during hot stamping process, such as crack and wrinkling, were discussed. The crack mode was dimple-dominated ductile fracture, which was induced by micro-void nucleation, growth and coalescence.展开更多
Dual equal channel lateral extrusion(DECLE)process with various passes followed by sheet extrusion process was performed to produce fine-grained ZK60 alloy sheets.The coarse grain structure of the annealed sample afte...Dual equal channel lateral extrusion(DECLE)process with various passes followed by sheet extrusion process was performed to produce fine-grained ZK60 alloy sheets.The coarse grain structure of the annealed sample after applying sheet extrusion(size:68μm)changed to fine grains of 6.0 and 5.2μm after 3 and 5 passes of DECLE and following extrusion.The hot shear deformation behavior of samples was studied by developing constitutive equations based on shear punch test(SPT)results.SPT was carried out in the temperature range of 200−300℃ and strain rate range of 0.003−0.33 s^(–1).The activation energy of 125−139 kJ/mol and the stress exponent of 3.5−4.2 were calculated for all conditions,which indicated that dislocation creep,controlled by dislocation climb and solute drag mechanism,acted as the main hot deformation mechanism.It was concluded that material constants of n and Q are dependent on the microstructural factors such as grain size and second phase particle fraction,and the relationship of which was anticipated using a 3D surface curve.Moreover,the similar strong basal texture of extruded sheets gave rise to the same deformation mechanisms during SPT and similar n and Q values for ZK60 alloy.展开更多
Hot stamping(press hardening) is widely used to fabricate safety components such as door beams and B pillars with increased strength via quenching. However, parts that are hot-stamped from ultra-high-strength steel(UH...Hot stamping(press hardening) is widely used to fabricate safety components such as door beams and B pillars with increased strength via quenching. However, parts that are hot-stamped from ultra-high-strength steel(UHSS) have very limited elongation,i.e., low ductility. In the present study, a novel variant of hot stamping technology called quenching-and-partitioning(Q&P) hot stamping was developed. This approach was tested on several UHSS sheet metals, and it was confirmed that this method can be used to overcome the drawbacks associated with conventional hot stamping. The applicability of Q&P hot stamping to each of these steels was also assessed. The part properties and performances of three widely used ultra-high-strength sheet metals, B1500 HS,27 SiMn, and TRIP780, were evaluated through tensile testing and microstructural observations. The results demonstrated that the ductility of Q&P hot-stamped sheet metals was notably higher than that of the conventionally hot-stamped parts because Q&P hot stamping gives rise to a dual-phase structure of both martensite and austenite. Further, material tests demonstrated that the Q&P treatment had positive effects on all three selected materials, of which TRIP780 had the best ductility and the highest value of the product of strength and plasticity. Scanning electron microscopy images indicated that the silicon in the steels could limit the formation of cementite and would, therefore, improve the mechanical properties of Q&P hot-stamped products.展开更多
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.
基金Project (51275185) supported by the National Natural Science Foundation of China
文摘Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.
文摘In this study, a novel punch toolset was developed to investigate the hot stamping of AA6082-T4 sheet. The effect of the process parameters, including forming temperature, punching velocity, friction coefficient, and blank holder force(BHF) on formability was quantified using Taguchi design, analysis of variance(ANOVA) and mathematical statistics. The finite element(FE) model has been established in software Pamstamp for simulation and analysis of their effects on the minimum thickness and thickness variation of the hot-stamped component. The major factors influencing the minimum thickness of the hot-stamped part has been found to be BHF and friction coefficient with influence significance of 35.3% and 34.88%, respectively. Additionally, punch velocity and BHF affect the thickness deviation significantly with influence significance of 40.43% and 35.42%, respectively. Furthermore, a serious thinning occurs on the punch corner region of the hot-stamped cup when the BHF is larger than 2.4 kN. The thickness deviation of the hotformed cup has been found to be firstly decreased and then increased with the increase of punch velocity. Low friction coefficient between punch and blank led to crack at bottom centre of the cup. Moreover, different type, phenomenon and mechanism of defects occurring during hot stamping process, such as crack and wrinkling, were discussed. The crack mode was dimple-dominated ductile fracture, which was induced by micro-void nucleation, growth and coalescence.
文摘Dual equal channel lateral extrusion(DECLE)process with various passes followed by sheet extrusion process was performed to produce fine-grained ZK60 alloy sheets.The coarse grain structure of the annealed sample after applying sheet extrusion(size:68μm)changed to fine grains of 6.0 and 5.2μm after 3 and 5 passes of DECLE and following extrusion.The hot shear deformation behavior of samples was studied by developing constitutive equations based on shear punch test(SPT)results.SPT was carried out in the temperature range of 200−300℃ and strain rate range of 0.003−0.33 s^(–1).The activation energy of 125−139 kJ/mol and the stress exponent of 3.5−4.2 were calculated for all conditions,which indicated that dislocation creep,controlled by dislocation climb and solute drag mechanism,acted as the main hot deformation mechanism.It was concluded that material constants of n and Q are dependent on the microstructural factors such as grain size and second phase particle fraction,and the relationship of which was anticipated using a 3D surface curve.Moreover,the similar strong basal texture of extruded sheets gave rise to the same deformation mechanisms during SPT and similar n and Q values for ZK60 alloy.
基金supported by the National Natural Science Foundation of China(Grant Nos.51105247&U1564203)
文摘Hot stamping(press hardening) is widely used to fabricate safety components such as door beams and B pillars with increased strength via quenching. However, parts that are hot-stamped from ultra-high-strength steel(UHSS) have very limited elongation,i.e., low ductility. In the present study, a novel variant of hot stamping technology called quenching-and-partitioning(Q&P) hot stamping was developed. This approach was tested on several UHSS sheet metals, and it was confirmed that this method can be used to overcome the drawbacks associated with conventional hot stamping. The applicability of Q&P hot stamping to each of these steels was also assessed. The part properties and performances of three widely used ultra-high-strength sheet metals, B1500 HS,27 SiMn, and TRIP780, were evaluated through tensile testing and microstructural observations. The results demonstrated that the ductility of Q&P hot-stamped sheet metals was notably higher than that of the conventionally hot-stamped parts because Q&P hot stamping gives rise to a dual-phase structure of both martensite and austenite. Further, material tests demonstrated that the Q&P treatment had positive effects on all three selected materials, of which TRIP780 had the best ductility and the highest value of the product of strength and plasticity. Scanning electron microscopy images indicated that the silicon in the steels could limit the formation of cementite and would, therefore, improve the mechanical properties of Q&P hot-stamped products.