Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the ...Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy.展开更多
The standard model of sonoluminescence suggests that the Coulomb barrier to deuterium fusion may be overcome by high bubble gas temperatures caused by compression heating if the bubble diameter remains spherical durin...The standard model of sonoluminescence suggests that the Coulomb barrier to deuterium fusion may be overcome by high bubble gas temperatures caused by compression heating if the bubble diameter remains spherical during bubble collapse.However, in the more likely collapse geometry of a pancake shape, the temperature rise in the bubbles is negligible. But the collapsing pancake bubble is found to significantly increase the frequency of the infrared energy available in the vibrational state of the water molecules at ambient temperature. For a collapse to liquid density, ultraviolet radiation at about 10eV is found. Although the ultraviolet radiation is of a low intensity, higher intensities may be possible if the bubble collapse is enhanced by visible and infrared lasers. Neither hot nor cold fusion is predicted in bubble collapse,but the ultraviolet energy at about 10eV developed in the bubble is sufficient to provide the basis for a new field of chemistry called ultrasound induced and laser enhanced cold fusion chemistry.展开更多
This paper reviews the author's recent works on the basic physics of cold fusion by the TSC (tetrahedral symmetric condensate) theory. Models of TSC formation conditions in condensed matter are first proposed. Seco...This paper reviews the author's recent works on the basic physics of cold fusion by the TSC (tetrahedral symmetric condensate) theory. Models of TSC formation conditions in condensed matter are first proposed. Secondly formulas for cold fusion rates per D(H)-cluster are explained with typical quantitative results. The 4D/TSC fusion and the 4H/TSC WS fusion are underlying mechanisms, respectively for the D (deuterium)-system and the H (protium)-system.展开更多
A model has been established for the interaction between a single-mode optical field and a 2-energy-level cold atom with exact analytic solutions given. The processes of momentum and energy exchanges between the optic...A model has been established for the interaction between a single-mode optical field and a 2-energy-level cold atom with exact analytic solutions given. The processes of momentum and energy exchanges between the optical field and the cold atom due to the interaction between them are discussed in detail, and a formula has been given for the variation of momentum and energy exchange volumes with time t in dress state while both the effects of photon recoil and Doppler effect are taken into consideration.展开更多
The author's Process of Cold Fusion firstly was announced at the International Conference on Emerging Nuclear Energy Systems in 2007, after that it was presented at the International Conference on Emerging Nuclear En...The author's Process of Cold Fusion firstly was announced at the International Conference on Emerging Nuclear Energy Systems in 2007, after that it was presented at the International Conference on Emerging Nuclear Energy Systems in 2009. The product has already been applied since June, 2007. It was developed as a large Module of 300 cm x 40 cm, producing energy at 600 megawatts per hour, with unique waste of about 300 cubic meters of pure drinkable instant water a day. There is also a Portable Module, producing about 1 megawatt per hour, having in waste about 1 cubic meter of pure drinkable instant water a day. The important details: (1) we have the ability to stop the Module at any time; (2) the civil applications of this process is mentioned at the articles, published on the website of the European Scientific Parliament in the year of 2010; (3) the diverse modules became the object of special protocols, signed with a number of countries all over the world.展开更多
The author's process of cold fusion, was announced to International Conference on Emerging Nuclear Energy Systems in 2007, then exposed to International Conference on Emerging Nuclear Energy Systems in 2009, and has ...The author's process of cold fusion, was announced to International Conference on Emerging Nuclear Energy Systems in 2007, then exposed to International Conference on Emerging Nuclear Energy Systems in 2009, and has been applied since June, 2007 in a non-member border country of the European Union, for safety reasons, the product, of a large module of 300 cm x 40 cm, using energy of mass of 600 megawatts per hour, and unique waste, 300 cubic meters of pure water a day, instantly drinkable. The presentation which the author shall make, will contain, if it is possible, several demonstrations of a portable module, producing one megawatt per hour, and in waste one cubic meter of water per day: the authors are able to stop the module at any time. The civil applications of this process, the author developed in the articles published on the site of the European Scientific Parliament 2010, and diverse modules were the object of a protocol signed by large Asian country.展开更多
Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply p...Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply passive cooling and thermal insulation to the room located below it. This novel radiative skylight can, in its cooling mode, lead heat from the room below, to the cool skies located above the skylight. When cooling is no longer needed or attainable, the skylight will in its cooling mode provide the room with an optimal amount of thermal resistance. This article is a progress reporting on the modeling of the skylight. The main work is done to combine the different heat transfer methods into one single model by the use of the commercial program Comsol 4.1. The results show that a cooling effect of 100 W/ma is achievable when the skylight is compared with a similar skylight containing only air.展开更多
With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical conditio...With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.展开更多
In the practice of petroleum industry, adding cold flow improver (CFI) to lower the fuel's cold filter plugging point (CFPP) is an effective and economic way for improving the cold flow performance of diesel fuel...In the practice of petroleum industry, adding cold flow improver (CFI) to lower the fuel's cold filter plugging point (CFPP) is an effective and economic way for improving the cold flow performance of diesel fuel. This paper described the synthesis and evaluation of the performance of dibehenyl fumarate-vinyl acetate (FV) copolymer for improving the cold flow performance of the tested diesel fuels. The carbon distribution in n-alkanes of the tested diesel samples were analyzed by gas phase chromatography. The structure of the copolymer was confirmed by the 1H NMR spectroscopy. The wax crystals morphologies with and without adding the FV additive were investigated by means of polarizing microscope. The test results indicated that the FV additive could depress CFPP of the tested diesel samples by 2℃ and 4℃, respectively, when dosage of the additive was 0.08 m%. The additive can modify the size and shape of the wax crystals and inhibit the formation of larger wax crystal lattices.展开更多
Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calc...Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy ECN = 15 ± 1 MeV, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (Bf ) and neutron separation energies (S1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β24-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the In cross-sections are addressed for ZCN = 104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto ZCN = 109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia (INS) is also investigated at these energies.展开更多
A fundamental analysis of helium-gas coolant leakage rate through first-wall cracks in Tokamak fusion reactors was made. Criteria for ascertaining the correct flow models were thoroughly investigated. After testing th...A fundamental analysis of helium-gas coolant leakage rate through first-wall cracks in Tokamak fusion reactors was made. Criteria for ascertaining the correct flow models were thoroughly investigated. After testing the criteria, it was determined that the correct model is the compressible choked flow for the helium-gas coolant under the normal operating conditions in the Tokamak fusion reactors. The upper bound leakage rates through metallic wall for two crack sizes were calculated. The calculated maximum numbers of allowable cracks through metallic and silicon-carbon composite wall were also reported. The experimental data of specimen S-23 (the small crack size), checked with the predicted or calculated leakage rate. But the experimental data of specimen S-4 (the large crack size, which is only 4.4 times larger than the crack size of specimen S-23) were two orders of magnitude higher than the calculated value. This is probably due to the many through-cracks undetected and therefore, not reported in the experiment, and not due to the difference in crack sizes. It should be noted that since there are only two test data points, it is recommended that more testing or experimental data will be needed. The results of two previous investigations about the calculated leakage values, their equations used, and their flow models employed were also reviewed. It is concluded that the correct model for the analysis is the compressible choked flow, and that helium can be as an effective coolant for fusion power reactors. Several recommendations are also made. Specifically, more experiments for helium, and similar analysis and experiments for lithium and water coolant are needed; and should be encouraged.展开更多
The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterisation of subcooled flow boiling CHF unde...The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterisation of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors, i.e. high liquid velocity and subcooling.The experiment was carried out exploring the following parameters: channel diameter (from 2.5 to 8.0 mm), heated length (10 and 15 cm), liquid velocity (from 2 to 40 m/s), exit pressure (from atmospheric to 5.0 MPa), inlet temperature (from 30 to 80℃), channel orientation (vertical and horizontal). A Inaximum CHF value of 60.6 MW/m2 has been obtained under the following conditions: Tin = 30°, p= 2.5 MPa, u = 40 m/s, D = 2.5 mm (smooth channel)Turbulence promoters (helically coiled wires) have been employed to further enhance the CHF attainable with subcooled flow boiling. Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.展开更多
The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 ...The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating ann holding both the PMMA TE model and the instru mentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermochromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pres sure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; more over several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steadystate RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. LowReynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an inhouse developed pressure based solver exploiting the kco SST turbulence model implemented in the framework of the opensource finite volume discretization toolbox OpenFOAM~. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the heated surface as to resemble a 90 [deg] blade metal angle. Results are reported in terms of de tailed heat transfer coefficient 2D maps on the suction side surface as well as spanwise profiles inside the pedestal ducts.展开更多
基金Project(51341004)supported by the National Natural Science Foundation of ChinaProject(S050ITP7005)supported by the Shanghai Jiao Tong University Undergraduate Innovative Practice Program,China
文摘Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy.
文摘The standard model of sonoluminescence suggests that the Coulomb barrier to deuterium fusion may be overcome by high bubble gas temperatures caused by compression heating if the bubble diameter remains spherical during bubble collapse.However, in the more likely collapse geometry of a pancake shape, the temperature rise in the bubbles is negligible. But the collapsing pancake bubble is found to significantly increase the frequency of the infrared energy available in the vibrational state of the water molecules at ambient temperature. For a collapse to liquid density, ultraviolet radiation at about 10eV is found. Although the ultraviolet radiation is of a low intensity, higher intensities may be possible if the bubble collapse is enhanced by visible and infrared lasers. Neither hot nor cold fusion is predicted in bubble collapse,but the ultraviolet energy at about 10eV developed in the bubble is sufficient to provide the basis for a new field of chemistry called ultrasound induced and laser enhanced cold fusion chemistry.
文摘This paper reviews the author's recent works on the basic physics of cold fusion by the TSC (tetrahedral symmetric condensate) theory. Models of TSC formation conditions in condensed matter are first proposed. Secondly formulas for cold fusion rates per D(H)-cluster are explained with typical quantitative results. The 4D/TSC fusion and the 4H/TSC WS fusion are underlying mechanisms, respectively for the D (deuterium)-system and the H (protium)-system.
文摘A model has been established for the interaction between a single-mode optical field and a 2-energy-level cold atom with exact analytic solutions given. The processes of momentum and energy exchanges between the optical field and the cold atom due to the interaction between them are discussed in detail, and a formula has been given for the variation of momentum and energy exchange volumes with time t in dress state while both the effects of photon recoil and Doppler effect are taken into consideration.
文摘The author's Process of Cold Fusion firstly was announced at the International Conference on Emerging Nuclear Energy Systems in 2007, after that it was presented at the International Conference on Emerging Nuclear Energy Systems in 2009. The product has already been applied since June, 2007. It was developed as a large Module of 300 cm x 40 cm, producing energy at 600 megawatts per hour, with unique waste of about 300 cubic meters of pure drinkable instant water a day. There is also a Portable Module, producing about 1 megawatt per hour, having in waste about 1 cubic meter of pure drinkable instant water a day. The important details: (1) we have the ability to stop the Module at any time; (2) the civil applications of this process is mentioned at the articles, published on the website of the European Scientific Parliament in the year of 2010; (3) the diverse modules became the object of special protocols, signed with a number of countries all over the world.
文摘The author's process of cold fusion, was announced to International Conference on Emerging Nuclear Energy Systems in 2007, then exposed to International Conference on Emerging Nuclear Energy Systems in 2009, and has been applied since June, 2007 in a non-member border country of the European Union, for safety reasons, the product, of a large module of 300 cm x 40 cm, using energy of mass of 600 megawatts per hour, and unique waste, 300 cubic meters of pure water a day, instantly drinkable. The presentation which the author shall make, will contain, if it is possible, several demonstrations of a portable module, producing one megawatt per hour, and in waste one cubic meter of water per day: the authors are able to stop the module at any time. The civil applications of this process, the author developed in the articles published on the site of the European Scientific Parliament 2010, and diverse modules were the object of a protocol signed by large Asian country.
文摘Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply passive cooling and thermal insulation to the room located below it. This novel radiative skylight can, in its cooling mode, lead heat from the room below, to the cool skies located above the skylight. When cooling is no longer needed or attainable, the skylight will in its cooling mode provide the room with an optimal amount of thermal resistance. This article is a progress reporting on the modeling of the skylight. The main work is done to combine the different heat transfer methods into one single model by the use of the commercial program Comsol 4.1. The results show that a cooling effect of 100 W/ma is achievable when the skylight is compared with a similar skylight containing only air.
文摘With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.
基金supported by the Basic Research Program of the State Key Laboratory of Heavy Oil Processing(200310),China University of Petroleum,Beijing,China.
文摘In the practice of petroleum industry, adding cold flow improver (CFI) to lower the fuel's cold filter plugging point (CFPP) is an effective and economic way for improving the cold flow performance of diesel fuel. This paper described the synthesis and evaluation of the performance of dibehenyl fumarate-vinyl acetate (FV) copolymer for improving the cold flow performance of the tested diesel fuels. The carbon distribution in n-alkanes of the tested diesel samples were analyzed by gas phase chromatography. The structure of the copolymer was confirmed by the 1H NMR spectroscopy. The wax crystals morphologies with and without adding the FV additive were investigated by means of polarizing microscope. The test results indicated that the FV additive could depress CFPP of the tested diesel samples by 2℃ and 4℃, respectively, when dosage of the additive was 0.08 m%. The additive can modify the size and shape of the wax crystals and inhibit the formation of larger wax crystal lattices.
基金Supported by the Council of Scientific and Industrial Research(CSIR),in the Form of Research Project Grant No.03(1341)/15/EMR-Ⅱ and to DST,New DelhiINSPIRE-Fellowship Grant No.DST/INSPIRE/03/2015/000199
文摘Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy ECN = 15 ± 1 MeV, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (Bf ) and neutron separation energies (S1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β24-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the In cross-sections are addressed for ZCN = 104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto ZCN = 109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia (INS) is also investigated at these energies.
文摘A fundamental analysis of helium-gas coolant leakage rate through first-wall cracks in Tokamak fusion reactors was made. Criteria for ascertaining the correct flow models were thoroughly investigated. After testing the criteria, it was determined that the correct model is the compressible choked flow for the helium-gas coolant under the normal operating conditions in the Tokamak fusion reactors. The upper bound leakage rates through metallic wall for two crack sizes were calculated. The calculated maximum numbers of allowable cracks through metallic and silicon-carbon composite wall were also reported. The experimental data of specimen S-23 (the small crack size), checked with the predicted or calculated leakage rate. But the experimental data of specimen S-4 (the large crack size, which is only 4.4 times larger than the crack size of specimen S-23) were two orders of magnitude higher than the calculated value. This is probably due to the many through-cracks undetected and therefore, not reported in the experiment, and not due to the difference in crack sizes. It should be noted that since there are only two test data points, it is recommended that more testing or experimental data will be needed. The results of two previous investigations about the calculated leakage values, their equations used, and their flow models employed were also reviewed. It is concluded that the correct model for the analysis is the compressible choked flow, and that helium can be as an effective coolant for fusion power reactors. Several recommendations are also made. Specifically, more experiments for helium, and similar analysis and experiments for lithium and water coolant are needed; and should be encouraged.
文摘The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterisation of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors, i.e. high liquid velocity and subcooling.The experiment was carried out exploring the following parameters: channel diameter (from 2.5 to 8.0 mm), heated length (10 and 15 cm), liquid velocity (from 2 to 40 m/s), exit pressure (from atmospheric to 5.0 MPa), inlet temperature (from 30 to 80℃), channel orientation (vertical and horizontal). A Inaximum CHF value of 60.6 MW/m2 has been obtained under the following conditions: Tin = 30°, p= 2.5 MPa, u = 40 m/s, D = 2.5 mm (smooth channel)Turbulence promoters (helically coiled wires) have been employed to further enhance the CHF attainable with subcooled flow boiling. Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.
基金supported by the Italian Ministry of Education,University and Research (MIUR)
文摘The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating ann holding both the PMMA TE model and the instru mentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermochromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pres sure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; more over several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steadystate RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. LowReynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an inhouse developed pressure based solver exploiting the kco SST turbulence model implemented in the framework of the opensource finite volume discretization toolbox OpenFOAM~. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the heated surface as to resemble a 90 [deg] blade metal angle. Results are reported in terms of de tailed heat transfer coefficient 2D maps on the suction side surface as well as spanwise profiles inside the pedestal ducts.