It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of...It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of standing waves for ultrasonic purification of magnesium alloy melt,numerical simulation and relevant experiment were carried out.The numerical simulation was broken into two main aspects.On one hand,the ultrasonic field propagations within the cells with various shapes were characterized by numerical solutions of the wave equation and with a careful choice of geometry a nearly idealized standing wave field was finally obtained.On the other hand,within such a standing wave field the agglomeration behavior of oxidation inclusions in magnesium alloy melt was analyzed and discussed.The agglomeration time and agglomeration position of oxidation inclusions were predicted with numerical simulation method.The results show that the oxidation inclusions whose apparent densities are close to the density of the melt can agglomerate at wave nodes in a short time which to a great extent enhances and accelerates the separation of oxidation inclusions from magnesium alloy melt.展开更多
The water purification function of natural wetland systems is widely recognized,but rarely studied or scientifically evaluated.Extensive studies have been carried out by various international wetland research communit...The water purification function of natural wetland systems is widely recognized,but rarely studied or scientifically evaluated.Extensive studies have been carried out by various international wetland research communities to quantify the water quality improvement ability of the natural wetlands,in order to maintain such ability and wetland ecological health.This study aims to evaluate the purification function of Zhalong Wetland in China for removing total nitrogen(TN) and phosphorus(TP),based on ex-situ experiments and the development of a combined water quantity-quality model.Experiments and model predictions were carried out with different input TP and TN concentrations.Statistical analyses demonstrated that the relative errors between model simulations and experimental observations for TN and TP were 8.6% and 12.4%,respectively.With water retention time being maintained at 90 d,the removal rate of these pollutants could not reach the required Grade V standards,if the inflow TN concentration was over 42 mg L-1,or the input TP concentration was over 14 mg L-1.The simulation results also demonstrated that,even with Grade V quality standard compliance,when the water inflow from surrounding industries and agriculture lands into Zhalong Wetland reaches 0.3×10 8 m 3 a-1,the maximum TN and TP loads that the reserve can cope with are 1.26×10 3 t a-1 and 0.42×10 3 t a-1,respectively.Overall,this study has produced a significant amount of information that can be used for the protection of water quality and ecological health of Zhalong Wetland.展开更多
基金Projects(2007CB613701,2007CB613702)supported by the National Basic Research Program of ChinaProjects(50974037,50904018)supported by the National Natural Science Foundation of ChinaProject(NCET-08-0098)supported by the Program for New Century Excellent Talents in University of China
文摘It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of standing waves for ultrasonic purification of magnesium alloy melt,numerical simulation and relevant experiment were carried out.The numerical simulation was broken into two main aspects.On one hand,the ultrasonic field propagations within the cells with various shapes were characterized by numerical solutions of the wave equation and with a careful choice of geometry a nearly idealized standing wave field was finally obtained.On the other hand,within such a standing wave field the agglomeration behavior of oxidation inclusions in magnesium alloy melt was analyzed and discussed.The agglomeration time and agglomeration position of oxidation inclusions were predicted with numerical simulation method.The results show that the oxidation inclusions whose apparent densities are close to the density of the melt can agglomerate at wave nodes in a short time which to a great extent enhances and accelerates the separation of oxidation inclusions from magnesium alloy melt.
基金supported by the Knowledge Innovation Programs of Chinese Academy of Sciences (Grant No. KZCX2-YW-Q06-2)the National Basic Research Program of China ("973" Program) (Grant No.2010CB428404)
文摘The water purification function of natural wetland systems is widely recognized,but rarely studied or scientifically evaluated.Extensive studies have been carried out by various international wetland research communities to quantify the water quality improvement ability of the natural wetlands,in order to maintain such ability and wetland ecological health.This study aims to evaluate the purification function of Zhalong Wetland in China for removing total nitrogen(TN) and phosphorus(TP),based on ex-situ experiments and the development of a combined water quantity-quality model.Experiments and model predictions were carried out with different input TP and TN concentrations.Statistical analyses demonstrated that the relative errors between model simulations and experimental observations for TN and TP were 8.6% and 12.4%,respectively.With water retention time being maintained at 90 d,the removal rate of these pollutants could not reach the required Grade V standards,if the inflow TN concentration was over 42 mg L-1,or the input TP concentration was over 14 mg L-1.The simulation results also demonstrated that,even with Grade V quality standard compliance,when the water inflow from surrounding industries and agriculture lands into Zhalong Wetland reaches 0.3×10 8 m 3 a-1,the maximum TN and TP loads that the reserve can cope with are 1.26×10 3 t a-1 and 0.42×10 3 t a-1,respectively.Overall,this study has produced a significant amount of information that can be used for the protection of water quality and ecological health of Zhalong Wetland.