针对存在非线性、强耦合、外部未知有界干扰和建模不确定性的平面运动下无人直升机吊装系统,研究了一种基于径向基函数神经网络(radial basis function neural networks,RBFNNs)和干扰观测器的无人直升机吊装系统滑模减摆控制方法。首...针对存在非线性、强耦合、外部未知有界干扰和建模不确定性的平面运动下无人直升机吊装系统,研究了一种基于径向基函数神经网络(radial basis function neural networks,RBFNNs)和干扰观测器的无人直升机吊装系统滑模减摆控制方法。首先将系统模型转换成仿射非线性形式,利用RBFNNs逼近系统不确定性,设计干扰观测器估计神经网络逼近误差与外界未知有界干扰的复合值。然后基于RBFNNs和干扰观测器设计了滑模减摆控制器,并用Lyapunov方法证明闭环系统稳定性;最后通过仿真验证了所设计控制器的有效性。展开更多
A robust anti-swing control method based on the error transformation function is proposed,and the problem is handled for the unmanned helicopter slung-load system(HSLS)deviating from the equilibrium state due to the d...A robust anti-swing control method based on the error transformation function is proposed,and the problem is handled for the unmanned helicopter slung-load system(HSLS)deviating from the equilibrium state due to the disturbances in the lifting process.First,the nonlinear model of unmanned HSLS is established.Second,the errors of swing angles are constructed by using the two ideal swing angle values and the actual swing angle values for the unmanned HSLS under flat flight,and the error transformation functions are investigated to guarantee that the errors of swing angles satisfy the prescribed performance.Third,the nonlinear disturbance observers are introduced to estimate the bounded disturbances,and the robust controllers of the unmanned HSLS,the velocity and the attitude subsystems are designed based on the prescribed performance method,the output of disturbance observer and the sliding mode backstepping strategy,respectively.Fourth,the Lyapunov function is developed to prove the stability of the closed-loop system.Finally,the simulation studies are shown to demonstrate the effectiveness of the control strategy.展开更多
文摘针对存在非线性、强耦合、外部未知有界干扰和建模不确定性的平面运动下无人直升机吊装系统,研究了一种基于径向基函数神经网络(radial basis function neural networks,RBFNNs)和干扰观测器的无人直升机吊装系统滑模减摆控制方法。首先将系统模型转换成仿射非线性形式,利用RBFNNs逼近系统不确定性,设计干扰观测器估计神经网络逼近误差与外界未知有界干扰的复合值。然后基于RBFNNs和干扰观测器设计了滑模减摆控制器,并用Lyapunov方法证明闭环系统稳定性;最后通过仿真验证了所设计控制器的有效性。
基金This work was supported in part by the National Natural Science Foundation of China(No.62003163)the National Science Fund for the Key R&D projects(Social Development)in Jiangsu Province of China(No.BE2020704)+3 种基金the Aeronautical Science Foundation of China(Nos.201957052001,20200007052001)the Jiangsu Province“333”project(No.BRA2019051)the Postdoctoral Research Foundation of Jiangsu Province(No.2020Z112)the Natural Science Foundation of Jiangsu Province for Young Scholars(No.BK20200415)。
文摘A robust anti-swing control method based on the error transformation function is proposed,and the problem is handled for the unmanned helicopter slung-load system(HSLS)deviating from the equilibrium state due to the disturbances in the lifting process.First,the nonlinear model of unmanned HSLS is established.Second,the errors of swing angles are constructed by using the two ideal swing angle values and the actual swing angle values for the unmanned HSLS under flat flight,and the error transformation functions are investigated to guarantee that the errors of swing angles satisfy the prescribed performance.Third,the nonlinear disturbance observers are introduced to estimate the bounded disturbances,and the robust controllers of the unmanned HSLS,the velocity and the attitude subsystems are designed based on the prescribed performance method,the output of disturbance observer and the sliding mode backstepping strategy,respectively.Fourth,the Lyapunov function is developed to prove the stability of the closed-loop system.Finally,the simulation studies are shown to demonstrate the effectiveness of the control strategy.