The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-t...The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-to-liquid ratio and reaction temperature,were chosen in the experiments.The results show that the increase of temperature,concentrations of ammonia and ammonium sulphate is propitious to the leaching rate of copper ore.The leaching rate increases with the decrease of particle size and solid-to-liquid ratio.The leaching rate is controlled by the diffusion through the ash layer and the activation energy is determined to be 25.54 kJ/mol.A semi-empirical equation was proposed to describe the leaching kinetics.展开更多
To elucidate the mechanism of vascular hyporeactivity following severe hemorrhagic shock (HS) by studying the changes of ATP sensitive potassium channels (K ATP ) properties and membrane potential of mesenteric a...To elucidate the mechanism of vascular hyporeactivity following severe hemorrhagic shock (HS) by studying the changes of ATP sensitive potassium channels (K ATP ) properties and membrane potential of mesenteric arteriolar smooth muscle cells. Methods: Single channel currents were studied on cell attached and inside out patches of enzymatically isolated mesenteric arteriolar smooth muscle cells (ASMCs). Membrane potentials of arteriolar strips and ASMCs were recorded by intracellular membrane potential recording method and confocal microscopy, respectively. Results: K ATP channels in ASMCs were activated, which induced smooth muscle hyperpolarization following vascular hyporeactivity in HS. Conclusions: Hyperpolarizing effect of K ATP channel activation plays an important role in low vasoreactivity during severe hemorrhagic shock.展开更多
基金Project(2007CB613601) supported by the National Basic Research Program of ChinaProject(10C1095) supported by the Foundation of Hunan Educational Committee,China
文摘The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-to-liquid ratio and reaction temperature,were chosen in the experiments.The results show that the increase of temperature,concentrations of ammonia and ammonium sulphate is propitious to the leaching rate of copper ore.The leaching rate increases with the decrease of particle size and solid-to-liquid ratio.The leaching rate is controlled by the diffusion through the ash layer and the activation energy is determined to be 25.54 kJ/mol.A semi-empirical equation was proposed to describe the leaching kinetics.
文摘To elucidate the mechanism of vascular hyporeactivity following severe hemorrhagic shock (HS) by studying the changes of ATP sensitive potassium channels (K ATP ) properties and membrane potential of mesenteric arteriolar smooth muscle cells. Methods: Single channel currents were studied on cell attached and inside out patches of enzymatically isolated mesenteric arteriolar smooth muscle cells (ASMCs). Membrane potentials of arteriolar strips and ASMCs were recorded by intracellular membrane potential recording method and confocal microscopy, respectively. Results: K ATP channels in ASMCs were activated, which induced smooth muscle hyperpolarization following vascular hyporeactivity in HS. Conclusions: Hyperpolarizing effect of K ATP channel activation plays an important role in low vasoreactivity during severe hemorrhagic shock.