期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于语法解析树的函数漏洞发现方法 被引量:1
1
作者 陈永艳 束洪春 戴伟 《计算机科学》 CSCD 北大核心 2013年第8期119-123,135,共6页
大多数行业定制软件的漏洞检测较困难,而传统的静态漏洞检测方法会产生很多错误的和虚假的信息。针对函数调用前后存在的漏洞问题,提出了基于上下文无关的自顶向下与自底向上相结合的语法解析树的方法,它能够在对函数内部定义不了解或... 大多数行业定制软件的漏洞检测较困难,而传统的静态漏洞检测方法会产生很多错误的和虚假的信息。针对函数调用前后存在的漏洞问题,提出了基于上下文无关的自顶向下与自底向上相结合的语法解析树的方法,它能够在对函数内部定义不了解或者部分了解的情况下,解析函数调用前后安全契约规则:前置规则和后置规则。同时通过扩展规则表示的XML文法来表示面向对象下,规则中的属性存在继承关系下的契约规则。实验表明,与同类型安全分析工具比较,该方法具有避免函数重复分析、规则可扩展性良好、尤其在自定义对象类和特定环境下自定义参数准确率高等优点。 展开更多
关键词 函数弱点 继承关系 契约规则 语法解析树
下载PDF
The Roughness of Model Function to the Basis Functions 被引量:1
2
作者 To Van Ban Nguyen Thi Quyen Phan Thu Ha 《Journal of Mathematics and System Science》 2013年第8期385-390,共6页
The roughness of the model function f(x) to the basis functions has been identified. When the model function is continuous segment, its roughness does not depend on the behavior of the first segment, but depends on ... The roughness of the model function f(x) to the basis functions has been identified. When the model function is continuous segment, its roughness does not depend on the behavior of the first segment, but depends on "h", the shift in the slope of two consecutive segments. If the distribution of design is uniform, f(x) is continuous segment function, and h is constant, then the maximum roughness is h2/192 obtained at the midpoint of the observations. Suppose that we have a sequence of designs {Pn(x)} then its corresponding distribution {Fn (x)} converges weakly to some distribution F(x). Let D(f) be a set of discontinuous points off(x), it is possible to take the limit of the roughness if D(f) has zero (dF)-measure. The behavior of maximum roughness of the discontinuous segment function has been studied by using grid points. 展开更多
关键词 The roughness segment function model function DESIGN converge.
下载PDF
WEAK TRAVELLING WAVE FRONT SOLUTIONS OF GENERALIZED DIFFUSION EQUATIONS WITH REACTION
3
作者 WANG JUNYU(Department of Mathematics, Jinn Universityt Changchun 130023, Chilla) 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1994年第3期283-292,共10页
The author demonstrate that the two-point boundary value problemhas a solution (A,P(8)), where III is the smallest parameter, under the minimal stringent resstrictions oil f(8), by applying the shooting and regularisa... The author demonstrate that the two-point boundary value problemhas a solution (A,P(8)), where III is the smallest parameter, under the minimal stringent resstrictions oil f(8), by applying the shooting and regularisation methods. In a classic paper)Kolmogorov et. al. studied in 1937 a problem which can be converted into a special case of theabove problem.The author also use the solutioll (A, p(8)) to construct a weak travelling wave front solutionu(x, t) = y((), (= x -- Ct, C = AN/(N + 1), of the generalized diffusion equation with reactionO { 1 O.IN ̄1 OUI onde L k(u) i ox: &)  ̄ & = g(u),where N > 0, k(8) > 0 a.e. on [0, 1], and f(s):= ac i: g(t)kl/N(t)dt is absolutely continuouson [0, 11, while y(() is increasing and absolutely continuous on (--co, +co) and(k(y(())ly,(OI'), = g(y(()) -- Cy'(f) a.e. on (--co, +co),y( ̄oo)  ̄ 0, y(+oo)  ̄ 1. 展开更多
关键词 Generalized diffusion equation Weak travelling wave front solution Two-point boundary value problem Shooting method Regularization method.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部