Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,su...Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations.展开更多
To cope with unpredictably environmental perturbations and sometimes stresses, plants have evolved with some mechanisms so that these developing stresses can be sensitively perceived and the physiology can be rapidl...To cope with unpredictably environmental perturbations and sometimes stresses, plants have evolved with some mechanisms so that these developing stresses can be sensitively perceived and the physiology can be rapidly regulated. Such perception and regulation can be a kind of feed_forward mechanism and may involve many biochemical and physiological processes and/or the expression of many genes. Although many dehydration_responsive genes have been identified, much fewer of their functions have been known. Such stress_ induced responses should include the initial perception of the dehydration signal, then the complicated signal transduction and cellular transmission until to the final gene activation or expression. As an important plant stress hormone abscisic acid (ABA) mediates many such responses. We believe that starting from the initial perception of dehydration to the gene expression leading to the stress_induced ABA biosynthesis is the most important stress signal transduction pathway among all the plant responses to stresses. Identification of the genes involved and understanding their roles during stress perception and physiological regulation shall be the most important and interesting research field in the coming years.展开更多
In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algori...In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA.展开更多
Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic med...Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification.展开更多
In commercial applications of phase Doppler anemometry (PDA), the effectiveness of non sphericity of particles is present and the response of PDA system deviates from the theoretical prediction. In this paper, the st...In commercial applications of phase Doppler anemometry (PDA), the effectiveness of non sphericity of particles is present and the response of PDA system deviates from the theoretical prediction. In this paper, the statistic characteristics of PDA signal related to irregular particles is analyzed and a method of statistic classification of irregular particles is proposed.It proves that the parameter of PDA signal for irregular particles is an unbiased estimation for spherical ones, the mean of the phase difference is in direct proportion to the mean diameter of particles and the standard deviation of the phase difference increases linearly with the standard deviation of irregular particles. As an application of the identification of irregular objects, fuzzy patterns and similarities of haemocytes are used to recognize and quantify cell samples.The statistic classification of particles is more significant in practice.展开更多
A Bayes discriminant analysis method to identify the risky of complicated goaf in mines was presented. Nine factors influencing the stability of goaf risky, including uniaxial compressive strength of rock, elastic mod...A Bayes discriminant analysis method to identify the risky of complicated goaf in mines was presented. Nine factors influencing the stability of goaf risky, including uniaxial compressive strength of rock, elastic modulus of rock, rock quality designation (RQD), area ratio of pillar, ratio of width to height of pillar, depth of ore body, volume of goaf, dip of ore body and area of goal, were selected as discriminant indexes in the stability analysis of goal. The actual data of 40 goals were used as training samples to establish a discriminant analysis model to identify the stability of goaf. The results show that this discriminant analysis model has high precision and misdiscriminant ratio is 0.025 in re-substitution process. The instability identification of a metal mine was distinguished by using this model and the identification result is identical with that of practical situation.展开更多
A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree o...A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data.展开更多
For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize th...For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.展开更多
A new anion receptor bearing phenolic hydroxy group based on 3,5- ditertbutylsalicylaldehyde-p-nitrophenylhydrazone (1) was designed and synthesized. Upon addition of AcO- and F-, the receptor exhibited visible colo...A new anion receptor bearing phenolic hydroxy group based on 3,5- ditertbutylsalicylaldehyde-p-nitrophenylhydrazone (1) was designed and synthesized. Upon addition of AcO- and F-, the receptor exhibited visible color changes from deep yellow to purple. However, no obvious color changes were observed on addition of the other anions tested (H2PO4-, Cl-, Br-, I-). The binding properties of the receptor with anions such as AcO and F- were investigated by UV-Vis and fluorescent titrations. The result indicated that the receptor 1 had a higher affinity to AcO- and F- and a 1:1 host-guest complex was formed through H-bond interactions between 1 and anions.展开更多
The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples...The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples of five different geographic origins: Eastern China.Central China.South-western China,North-western China and North-eastern China.Principal component analysis and SIMCA are applied to effectively classifying the samples according to the origin of the plants.The chemical information contained in the high resolution gas chromatographic data is sufficient to characterize the geographic origin of sam- pies.展开更多
Based on the theory of pattern recognition, the concept of closeness degree between fuzzy sets is brought into the condition assessment of long span bridges. Using the fuzzy analytic hierarchy process (FAHP), a math...Based on the theory of pattern recognition, the concept of closeness degree between fuzzy sets is brought into the condition assessment of long span bridges. Using the fuzzy analytic hierarchy process (FAHP), a mathematical model of a multi-objective assessment of a long span suspension bridge is set up. An example is given to show the procedure in the synthetical condition assessment of the Runyang Suspension Bridge, which includes the hierarchical division, the definition of factor weights and fuzzy membership functions, and the calculation of closeness degrees, etc. The assessment combines both the data from the health monitoring system and the manual tests. The classification of evaluation items as well as the calculation of deterministic and nondeterministic items is presented. Compared with the traditional method of point rating, this method can better describe the discreteness of monitoring data and the fuzziness in the condition assessment.展开更多
In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable develop...In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable development index. Based on the feature of qualitative and quantitative indices combining, the PCA-PR (principal component analysis and pattern recognition) model is constructed. The model first analyzes the principal components of the life-cycle indices system constructed above, and picks up those principal component indices that can reflect the health status of a project at any time. Then the pattern recognition model is used to study these principal components, which means that the real time health status of the project can be divided into five lamps from a green lamp to a red one and the health status lamp of the project can be recognized by using the PR model and those principal components. Finally, the process is shown with a real example and a conclusion consistent with the actual situation is drawn. So the validity of the index system and the PCA-PR model can be confirmed.展开更多
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl...Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.展开更多
A novel regularization method -- discriminative regularization (DR)is presented. The method provides a general way to incorporate the prior knowledge for the classification. By introducing the prior information into...A novel regularization method -- discriminative regularization (DR)is presented. The method provides a general way to incorporate the prior knowledge for the classification. By introducing the prior information into the regularization term, DR is used to minimize the empirical loss between the desired and actual outputs, as well as maximize the inter-class separability and minimize the intra-class compactness in the output space simultane- ously. Furthermore, by embedding equality constraints in the formulation, the solution of DR can solve a set of linear equations. Classification experiments show the superiority of the proposed DR.展开更多
By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Com...By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid.展开更多
Using function approximation technology and principal component analysis method, this paper presents a principal component feature to solve the time alignment problem and to simplify the structure of neural network. I...Using function approximation technology and principal component analysis method, this paper presents a principal component feature to solve the time alignment problem and to simplify the structure of neural network. Its extraction simulates the processing of speech information in human auditory system. The experimental results show that the principal component feature based recognition system outperforms the standard CDHMM and GMDS method in many aspects.展开更多
Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on S...Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on SVM while ignoring the within-class information in data. This paper presents a new DR approach, call- ed the dimensionality reduction based on SVM and LDA (DRSL). DRSL considers the between-class margins from SVM and LDA, and the within-class compactness from LDA to obtain the projection matrix. As a result, DRSL can realize the combination of the between-class and within-class information and fit the between-class and within-class structures in data. Hence, the obtained projection matrix increases the generalization ability of subsequent classification techniques. Experiments applied to classification techniques show the effectiveness of the proposed method.展开更多
文摘Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations.
文摘To cope with unpredictably environmental perturbations and sometimes stresses, plants have evolved with some mechanisms so that these developing stresses can be sensitively perceived and the physiology can be rapidly regulated. Such perception and regulation can be a kind of feed_forward mechanism and may involve many biochemical and physiological processes and/or the expression of many genes. Although many dehydration_responsive genes have been identified, much fewer of their functions have been known. Such stress_ induced responses should include the initial perception of the dehydration signal, then the complicated signal transduction and cellular transmission until to the final gene activation or expression. As an important plant stress hormone abscisic acid (ABA) mediates many such responses. We believe that starting from the initial perception of dehydration to the gene expression leading to the stress_induced ABA biosynthesis is the most important stress signal transduction pathway among all the plant responses to stresses. Identification of the genes involved and understanding their roles during stress perception and physiological regulation shall be the most important and interesting research field in the coming years.
文摘In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA.
基金supported by the National Natural Science Foundation of China(No.41004054)the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2011ZX05023-005-010)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20105122120002)supported by the Cultivating Program of Middle-aged Backbone Teachers of Chengdu University of Technology and the Cultivating Programme of Excellent Innovation Team of Chengdu University of Technology(Grang No.KYTD201002)
文摘Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification.
文摘In commercial applications of phase Doppler anemometry (PDA), the effectiveness of non sphericity of particles is present and the response of PDA system deviates from the theoretical prediction. In this paper, the statistic characteristics of PDA signal related to irregular particles is analyzed and a method of statistic classification of irregular particles is proposed.It proves that the parameter of PDA signal for irregular particles is an unbiased estimation for spherical ones, the mean of the phase difference is in direct proportion to the mean diameter of particles and the standard deviation of the phase difference increases linearly with the standard deviation of irregular particles. As an application of the identification of irregular objects, fuzzy patterns and similarities of haemocytes are used to recognize and quantify cell samples.The statistic classification of particles is more significant in practice.
基金Project (2010CB732004) supported by the National Basic Research Program of China
文摘A Bayes discriminant analysis method to identify the risky of complicated goaf in mines was presented. Nine factors influencing the stability of goaf risky, including uniaxial compressive strength of rock, elastic modulus of rock, rock quality designation (RQD), area ratio of pillar, ratio of width to height of pillar, depth of ore body, volume of goaf, dip of ore body and area of goal, were selected as discriminant indexes in the stability analysis of goal. The actual data of 40 goals were used as training samples to establish a discriminant analysis model to identify the stability of goaf. The results show that this discriminant analysis model has high precision and misdiscriminant ratio is 0.025 in re-substitution process. The instability identification of a metal mine was distinguished by using this model and the identification result is identical with that of practical situation.
基金The National Natural Science Foundation of China (No.60503023,60872160)the Natural Science Foundation for Universities ofJiangsu Province (No.08KJD520009)the Intramural Research Foundationof Nanjing University of Information Science and Technology(No.Y603)
文摘A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data.
基金Supported by the Academician Foundation of the 14th Research Institute of China Electronics Technology Group Corporation(2008041001)~~
文摘For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.
基金This work was supported by the Natural Science Foundation of Universities of Inner Mongolia Autonomous Region (No.NG09168 and NG10239).
文摘A new anion receptor bearing phenolic hydroxy group based on 3,5- ditertbutylsalicylaldehyde-p-nitrophenylhydrazone (1) was designed and synthesized. Upon addition of AcO- and F-, the receptor exhibited visible color changes from deep yellow to purple. However, no obvious color changes were observed on addition of the other anions tested (H2PO4-, Cl-, Br-, I-). The binding properties of the receptor with anions such as AcO and F- were investigated by UV-Vis and fluorescent titrations. The result indicated that the receptor 1 had a higher affinity to AcO- and F- and a 1:1 host-guest complex was formed through H-bond interactions between 1 and anions.
文摘The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples of five different geographic origins: Eastern China.Central China.South-western China,North-western China and North-eastern China.Principal component analysis and SIMCA are applied to effectively classifying the samples according to the origin of the plants.The chemical information contained in the high resolution gas chromatographic data is sufficient to characterize the geographic origin of sam- pies.
基金The National Natural Science Foundation of China(No50608017,50538020)
文摘Based on the theory of pattern recognition, the concept of closeness degree between fuzzy sets is brought into the condition assessment of long span bridges. Using the fuzzy analytic hierarchy process (FAHP), a mathematical model of a multi-objective assessment of a long span suspension bridge is set up. An example is given to show the procedure in the synthetical condition assessment of the Runyang Suspension Bridge, which includes the hierarchical division, the definition of factor weights and fuzzy membership functions, and the calculation of closeness degrees, etc. The assessment combines both the data from the health monitoring system and the manual tests. The classification of evaluation items as well as the calculation of deterministic and nondeterministic items is presented. Compared with the traditional method of point rating, this method can better describe the discreteness of monitoring data and the fuzziness in the condition assessment.
基金The Social Science Fund of Hebei Province (No.200607011)the Key Science and Technology Project of Hebei Province(No.07213529)
文摘In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable development index. Based on the feature of qualitative and quantitative indices combining, the PCA-PR (principal component analysis and pattern recognition) model is constructed. The model first analyzes the principal components of the life-cycle indices system constructed above, and picks up those principal component indices that can reflect the health status of a project at any time. Then the pattern recognition model is used to study these principal components, which means that the real time health status of the project can be divided into five lamps from a green lamp to a red one and the health status lamp of the project can be recognized by using the PR model and those principal components. Finally, the process is shown with a real example and a conclusion consistent with the actual situation is drawn. So the validity of the index system and the PCA-PR model can be confirmed.
文摘Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.
基金Supported by the National Natural Science Foundation of China(60773061)the Natural Science Foundation of Jiangsu Province(BK2008381)~~
文摘A novel regularization method -- discriminative regularization (DR)is presented. The method provides a general way to incorporate the prior knowledge for the classification. By introducing the prior information into the regularization term, DR is used to minimize the empirical loss between the desired and actual outputs, as well as maximize the inter-class separability and minimize the intra-class compactness in the output space simultane- ously. Furthermore, by embedding equality constraints in the formulation, the solution of DR can solve a set of linear equations. Classification experiments show the superiority of the proposed DR.
文摘By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid.
文摘Using function approximation technology and principal component analysis method, this paper presents a principal component feature to solve the time alignment problem and to simplify the structure of neural network. Its extraction simulates the processing of speech information in human auditory system. The experimental results show that the principal component feature based recognition system outperforms the standard CDHMM and GMDS method in many aspects.
文摘Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on SVM while ignoring the within-class information in data. This paper presents a new DR approach, call- ed the dimensionality reduction based on SVM and LDA (DRSL). DRSL considers the between-class margins from SVM and LDA, and the within-class compactness from LDA to obtain the projection matrix. As a result, DRSL can realize the combination of the between-class and within-class information and fit the between-class and within-class structures in data. Hence, the obtained projection matrix increases the generalization ability of subsequent classification techniques. Experiments applied to classification techniques show the effectiveness of the proposed method.