The influences of subsurface cracks,distributing along the axial direction,on the rolling contact fatigue(RCF)faliure in a bearing ring are investigated.A realistic three-dimensional model of the bearing ring containi...The influences of subsurface cracks,distributing along the axial direction,on the rolling contact fatigue(RCF)faliure in a bearing ring are investigated.A realistic three-dimensional model of the bearing ring containing three subsurface cracks is used to evaluate the fatigue crack propagation based on stress intensity factor(SIF)calculations.Moreover,the distributions of the subsurface cracks along the axial direction are varied to study their effects on RCF.The results provide valuable guidelines for enhanced understanding of RCF in bearings.展开更多
基金supported by the National Basic Research Program of China(Grant No.2011CB706605)State Key Program of National Natural Science Foundation of China(Grant No.51135007)+1 种基金Innovative Research Groups of the National Natural Science Foundation of Hubei Province(Grant No.2011CDA12)the Fundamental Research Funds for the Central Universities(Grant Nos.2012-Ia-017,2013-IV-014)for the support given to this research
文摘The influences of subsurface cracks,distributing along the axial direction,on the rolling contact fatigue(RCF)faliure in a bearing ring are investigated.A realistic three-dimensional model of the bearing ring containing three subsurface cracks is used to evaluate the fatigue crack propagation based on stress intensity factor(SIF)calculations.Moreover,the distributions of the subsurface cracks along the axial direction are varied to study their effects on RCF.The results provide valuable guidelines for enhanced understanding of RCF in bearings.