期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
分岔方法及其在电力系统中的应用 被引量:7
1
作者 王建 刘永强 吴捷 《电力系统及其自动化学报》 CSCD 2001年第1期6-6,22,共2页
本文给出了可用来分析电力系统电压稳定和周期振荡的分岔理论中的有关转折分岔和 Hopf分岔的概念、定理 ,并根据两类描述电力系统方程 :微分方程和代数方程 ,结合降维方法如 LS约化方法、中心流形方法介绍了求解分岔点的方法以及分岔理... 本文给出了可用来分析电力系统电压稳定和周期振荡的分岔理论中的有关转折分岔和 Hopf分岔的概念、定理 ,并根据两类描述电力系统方程 :微分方程和代数方程 ,结合降维方法如 LS约化方法、中心流形方法介绍了求解分岔点的方法以及分岔理论在电力系统中的应用。 展开更多
关键词 电力系统 电压稳定 周期振荡 分岔方法 微分方程
下载PDF
用分岔方法讨论有心力场轨道的稳定性
2
作者 孙彦 孙祝 程丽平 《山西大同大学学报(自然科学版)》 1998年第5期40-41,共2页
该文用分岔理论证明了在有心力场中运动的质点,其运动轨道不论形式如何,只要n<3,都是稳定轨道。
关键词 分岔方法 有心力场 轨道 稳定性
下载PDF
广义受迫Vander Pol-Duffing系统的稳定性与分岔
3
作者 张永祥 孔贵芹 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第21期5084-5085,共2页
给出了广义受迫VanderPol-Duffing方程,用多初始点分岔分析方法分析了系统外部参数对其稳定性的影响,应用了分岔图、Lyapunov指数图和Poincaré映射图分析了系统的非线性动力学行为,结果很好地解释了该系统中一些复杂的非线性现象,... 给出了广义受迫VanderPol-Duffing方程,用多初始点分岔分析方法分析了系统外部参数对其稳定性的影响,应用了分岔图、Lyapunov指数图和Poincaré映射图分析了系统的非线性动力学行为,结果很好地解释了该系统中一些复杂的非线性现象,为研究许多模型提供了一定的理论参考和实际意义。 展开更多
关键词 混沌 多初始点分岔分析方法 LYAPUNOV指数 POINCARE映射
下载PDF
一类非线性色散BBM方程的尖角子解
4
作者 马强 江波 《江苏理工学院学报》 2014年第4期53-58,共6页
利用动力系统分岔方法结合常微分方程的渐近分析证明了B(2,2)方程尖角子解的存在性,并给出了这些解的解析表达式.数值模拟进一步验证了所得结果的正确性。
关键词 分岔方法 B(2 2)方程 尖角子解
下载PDF
碰摩转子—轴承系统非线性动力学行为研究 被引量:8
5
作者 李振平 张金换 +1 位作者 金志浩 闻邦椿 《航空动力学报》 EI CAS CSCD 北大核心 2004年第2期179-183,共5页
为了充分揭示碰摩转子系统复杂的非线性动力学行为,将多初始点分岔分析方法应用于碰摩转子—轴承系统的研究当中。通过对给定参数下转子系统响应的数值模拟,发现了比单初始点算法更加丰富的非线性现象,在一定的参数范围内该碰摩转子系... 为了充分揭示碰摩转子系统复杂的非线性动力学行为,将多初始点分岔分析方法应用于碰摩转子—轴承系统的研究当中。通过对给定参数下转子系统响应的数值模拟,发现了比单初始点算法更加丰富的非线性现象,在一定的参数范围内该碰摩转子系统有多吸引子共存,并对解的演化过程进行了研究,结果很好地解释了碰摩转子系统中一些复杂的非线性现象。 展开更多
关键词 碰摩 转子—轴承系统 非线性动力学 多初始点分岔分析方法 拟周期 油膜压力
下载PDF
Analytical Hopf Bifurcation and Stability Analysis of T System 被引量:2
6
作者 Robert A.VanGorder S.Roy Choudhury 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期609-616,共8页
Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following th... Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following the Hopf bifurcation is constructed analytically for the T system using the method of multiple scales, and the stability of such orbits is analyzed. Such analytical results complement the numerical results present in the literature. The analytical results in the post-bifurcation regime are verified and extended via numerical simulations, as well as by the use of standard power spectra, autocorrelation functions, and fractal dimensions diagnostics. We find that the T system exhibits interesting behaviors in many parameter regimes. 展开更多
关键词 extended Hopf bifurcation analysis method of multiple scales T system stability analysis
下载PDF
A novel line-symmetric Goldberg 6R linkage with bifurcation property 被引量:1
7
作者 LI Lei LI Teng-fei +1 位作者 DAI Jian-sheng WANG Rui-qin 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3754-3767,共14页
This paper proposes a novel reconfigurable Goldberg 6R linkage,conformed to the construction of variant serial Goldberg 6R linkage,while simultaneously satisfying the line-symmetric Bricard qualifications.The isomeric... This paper proposes a novel reconfigurable Goldberg 6R linkage,conformed to the construction of variant serial Goldberg 6R linkage,while simultaneously satisfying the line-symmetric Bricard qualifications.The isomeric mechanism of this novel reconfigurable mechanism is obtained in combination with the isomerization method.The geometrically constrained conditions result in variable motion branches of the mechanism.Based on the singular value decomposition of the Jacobian matrix,the motion branches and branch bifurcation characteristics are analyzed,and the schematics of bifurcations in joint space is derived.This novel 6R linkage features one Goldberg 6R motion branch,two line-symmetric Bricard 6R motion branches,and one Bennett motion branch.With regards to the line-symmetric Bricard 6R motion branches,a similar function for the disassembly and recombination process can be achieved by reconstructing an intermediate configuration through bifurcation.Then,the isomerized generalized variant Goldberg 6R linkage is explicated in a similar way.Acting as a bridge,reconfigurability connects two families of overconstrained mechanisms. 展开更多
关键词 overconstrained mechanism reconfigurable mechanism SVD method bifurcation characteristics
下载PDF
一类非线性色散Boussinesq方程的隐式孤立波解 被引量:1
8
作者 江波 韩修静 毕勤胜 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第12期8343-8347,共5页
用动力系统分岔方法研究了一类非线性色散Boussinesq方程.在不同的参数条件下,给出了该方程具有隐函数形式的孤立波解的解析表达式.数值模拟进一步验证了所得结果的正确性.
关键词 非线性色散Boussinesq方程 分岔方法 同宿轨道 隐式孤立波解
原文传递
Bifurcation and chaos of an airfoil with cubic nonlinearity in incompressible flow 被引量:2
9
作者 CHEN FangQi ZHOU LiangQiang CHEN YuShu 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第8期1954-1965,共12页
Using a combination of analytical and numerical methods, the paper studies bifurcations and chaotic motions of a two-dimensional airfoil with cubic nonlinearity in incompressible flow. One type of critical points (cha... Using a combination of analytical and numerical methods, the paper studies bifurcations and chaotic motions of a two-dimensional airfoil with cubic nonlinearity in incompressible flow. One type of critical points (characterized by a negative eigenvalue, a simple zero eigenvalue and a pair of purely imaginary eigenvalues) for the bifurcation response equations is considered. With the aid of the normal form theory, the explicit expressions of the critical bifurcation lines leading to incipient and secondary bifurcations are obtained. The stability of the bifurcation solutions is also investigated. By using the undetermined coefficient method, the homoclinic orbit is found, and the uniform convergence of the homoclinic orbit series expansion is proved. It analytically demonstrates that there exists a homoclinic orbit joining the initial equilibrium point to itself, therefore Smale horseshoe chaos occurs for this system via Si'lnikov criterion. The system evolves into chaotic motion through period-doubling bifurcation, and is periodic again as the dimensionless airflow speed increases. Numerical simulations are also given, which confirm the analytical results. 展开更多
关键词 AIRFOIL BIFURCATION chaotic motion
原文传递
Pattern Formations in Heat Convection Problems
10
作者 Takaaki NISHIDA Yoshiaki TERAMOTO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第6期769-784,共16页
After Bénard's experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by t... After Bénard's experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by the bifurcation theory, weakly nonlinear theories and computational approaches. The boundary conditions for the velocity on the upper and lower boundaries are usually assumed as stress-free or no-slip. In the first part of this paper, some bifurcation pictures for the case of the stress-free on the upper boundary and the no-slip on the lower boundary are obtained. In the second part of this paper, the bifurcation pictures for the case of the stress-free on both boundaries by a computer assisted proof are verified. At last., Bénard-Marangoni heat convections for the ease of the free surface of the upper boundary are considered. 展开更多
关键词 Oberbeck-Boussinesq equation Heat convection Pattern formation Computer assisted proof
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部