期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
LiDar点云指导下特征分布趋同与语义关联的3D目标检测
1
作者 郑锦 蒋博韬 +1 位作者 彭微 王森 《电子学报》 EI CAS CSCD 北大核心 2024年第5期1700-1715,共16页
针对现有基于伪点云的3D目标检测算法精度远低于基于真实激光雷达(Light Detection and ranging,LiDar)点云的3D目标检测,本文研究伪点云重构,并提出适合伪点云的3D目标检测网络.考虑到由图像深度转换得到的伪点云稠密且随深度增大逐渐... 针对现有基于伪点云的3D目标检测算法精度远低于基于真实激光雷达(Light Detection and ranging,LiDar)点云的3D目标检测,本文研究伪点云重构,并提出适合伪点云的3D目标检测网络.考虑到由图像深度转换得到的伪点云稠密且随深度增大逐渐稀疏,本文提出深度相关伪点云稀疏化方法,在减少后续计算量的同时保留中远距离更多的有效伪点云,实现伪点云重构.本文提出LiDar点云指导下特征分布趋同与语义关联的3D目标检测网络,在网络训练时引入LiDar点云分支来指导伪点云目标特征的生成,使生成的伪点云特征分布趋同于LiDar点云特征分布,从而降低数据源不一致造成的检测性能损失;针对RPN(Region Proposal Network)网络获取的3D候选框内的伪点云间语义关联不足的问题,设计注意力感知模块,在伪点云特征表示中通过注意力机制嵌入点间的语义关联关系,提升3D目标检测精度.在KITTI 3D目标检测数据集上的实验结果表明:现有的3D目标检测网络采用重构后的伪点云,检测精度提升了2.61%;提出的特征分布趋同与语义关联的3D目标检测网络,将基于伪点云的3D目标检测精度再提升0.57%,相比其他优秀的3D目标检测方法在检测精度上也有提升. 展开更多
关键词 3D目标检测 伪点云 语义关联 分布趋同 注意力感知
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部