In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in ...In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.展开更多
In this paper, we study the fractional-order biological population models (FI3PMs) with Malthusian~ Verhulst, and porous media laws. The fractional derivative is defined in Caputo sense. The optimal homotopy asympto...In this paper, we study the fractional-order biological population models (FI3PMs) with Malthusian~ Verhulst, and porous media laws. The fractional derivative is defined in Caputo sense. The optimal homotopy asymptotic method (OHAM) for partial differ- ential equations (PDEs) is extended and successfully implemented to solve FBPMs. Third-order approximate solutions are obtained and compared with the exact solutions. The numerical results unveil that the proposed extension in the OHAM for fractional- order differential problems is very effective and simple in computation. The results reveal the effectiveness with high accuracy and extremely efficient to handle most complicated biological population models.展开更多
文摘In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.
文摘In this paper, we study the fractional-order biological population models (FI3PMs) with Malthusian~ Verhulst, and porous media laws. The fractional derivative is defined in Caputo sense. The optimal homotopy asymptotic method (OHAM) for partial differ- ential equations (PDEs) is extended and successfully implemented to solve FBPMs. Third-order approximate solutions are obtained and compared with the exact solutions. The numerical results unveil that the proposed extension in the OHAM for fractional- order differential problems is very effective and simple in computation. The results reveal the effectiveness with high accuracy and extremely efficient to handle most complicated biological population models.