目的压缩采样匹配追踪(CoSaMP)算法虽然引入回溯的思想,但其原子选择需要大量的观测值且在稀疏度估计不准确时,会降低信号重构精度,增加重构时间,降低重构效率。为提高CoSaMP算法的重构精度,改善算法的重构性能,提出了一种基于广义逆的...目的压缩采样匹配追踪(CoSaMP)算法虽然引入回溯的思想,但其原子选择需要大量的观测值且在稀疏度估计不准确时,会降低信号重构精度,增加重构时间,降低重构效率。为提高CoSaMP算法的重构精度,改善算法的重构性能,提出了一种基于广义逆的分段迭代匹配追踪(St IMP)算法。方法为保证迭代时挑选原子的精确性和快速性,对观测矩阵广义逆化,降低原子库中原子的相干性;原子更新结合正交匹配追踪(OMP)算法筛选原子的准确性与CoSaMP算法的回溯性,将迭代过程分为两个阶段:第1阶段利用OMP算法迭代K/2次;第2阶段以第1阶段OMP算法迭代所得的残差和原子为输入,并采用CoSaMP算法继续迭代,同时改变原子选择标准,从而精确快速地重构出稀疏信号。结果对于1维的高斯随机信号,无论在不同的稀疏度还是观测值下,相比于OMP、CoSaMP、正则化正交匹配追踪(ROMP)算法和傅里叶类圆环压缩采样匹配追踪(FR-CoSaMP)算法,St IMP算法更加稳健,且具有更高重构成功率;对于2维图像信号,在各个采样率下,St IMP算法的峰值信噪比(PSNR)均高于其他重构算法,在采样率为0.7时,St IMP算法的平均PSNR值比OMP、CoSaMP、ROMP和FR-CoSaMP算法分别高2.14 d B、1.20 d B、3.67 d B和0.90 d B,平均重构时间也较OMP、CoSaMP和FR-CoSaMP算法短。结论提出了一种改进的重构算法,对1维高斯随机信号和2维图像信号均有更好的重构效率和重构效果,与原算法和现有的主流图像重构方法相比,St IMP算法更具高效性和实用性。展开更多
文摘目的压缩采样匹配追踪(CoSaMP)算法虽然引入回溯的思想,但其原子选择需要大量的观测值且在稀疏度估计不准确时,会降低信号重构精度,增加重构时间,降低重构效率。为提高CoSaMP算法的重构精度,改善算法的重构性能,提出了一种基于广义逆的分段迭代匹配追踪(St IMP)算法。方法为保证迭代时挑选原子的精确性和快速性,对观测矩阵广义逆化,降低原子库中原子的相干性;原子更新结合正交匹配追踪(OMP)算法筛选原子的准确性与CoSaMP算法的回溯性,将迭代过程分为两个阶段:第1阶段利用OMP算法迭代K/2次;第2阶段以第1阶段OMP算法迭代所得的残差和原子为输入,并采用CoSaMP算法继续迭代,同时改变原子选择标准,从而精确快速地重构出稀疏信号。结果对于1维的高斯随机信号,无论在不同的稀疏度还是观测值下,相比于OMP、CoSaMP、正则化正交匹配追踪(ROMP)算法和傅里叶类圆环压缩采样匹配追踪(FR-CoSaMP)算法,St IMP算法更加稳健,且具有更高重构成功率;对于2维图像信号,在各个采样率下,St IMP算法的峰值信噪比(PSNR)均高于其他重构算法,在采样率为0.7时,St IMP算法的平均PSNR值比OMP、CoSaMP、ROMP和FR-CoSaMP算法分别高2.14 d B、1.20 d B、3.67 d B和0.90 d B,平均重构时间也较OMP、CoSaMP和FR-CoSaMP算法短。结论提出了一种改进的重构算法,对1维高斯随机信号和2维图像信号均有更好的重构效率和重构效果,与原算法和现有的主流图像重构方法相比,St IMP算法更具高效性和实用性。