A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating...A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters.This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads,investigating the shear behaviors of joints across varying initial normal loads,normal loading frequencies,and normal loading amplitudes.Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes.Dynamic normal loading can either increase or decrease shear strength,while this study demonstrates that higher frequencies lead to enhanced friction.Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient(JRC)values of joint surfaces after shearing.Positive correlations existed between frictional energy dissipation and peak shear forces,while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis.This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.展开更多
The Frenet-Serret formula is used to characterize the constant angle ruled surfaces in R3. When the surfaces are the tangent developmental and normal surfaces, that is, r(s, v) = tr(s) +v(cosα(s) . t(s) +s...The Frenet-Serret formula is used to characterize the constant angle ruled surfaces in R3. When the surfaces are the tangent developmental and normal surfaces, that is, r(s, v) = tr(s) +v(cosα(s) . t(s) +sina(s) . n(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a certain special surface. When the surfaces are normal and binormal surfaces, that is, r ( s, v ) = σ ( s ) + v ( cosa ( s ) . n(s) + since(s) . b(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a cylindrical surface.展开更多
In order to make a more effective use of the data from regional digital seismograph networks and to promote the study on shear wave splitting and its application to earthquake stress-forecasting, SAM software system, ...In order to make a more effective use of the data from regional digital seismograph networks and to promote the study on shear wave splitting and its application to earthquake stress-forecasting, SAM software system, i.e., the software on systematic analysis method of shear wave splitting has been developed. This paper introduces the design aims, system structure, function and characteristics about the SAM software system and shows some graphical interfaces of data input and result output. Lastly, it discusses preliminarily the study of shear wave splitting and its application to earthquake forecasting.展开更多
This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the prop...This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the propeller and intermediate shafts, under the influence of propeller-induced static and variable hydrodynamic excitations are also studied. The transfer matrix method related to the constant coefficients of differential equation solutions is used. The advantage of the latter as compared with a well-known method of transfer matrix associated with state vector is the possibility of reducing the number of multiplied matrices when adjacent shaft segments have the same material properties and diameters. The results show that there is no risk of buckling and confirm that the strength of the shaft line depends on the value of the static tangential stresses which is the most important component of the stress tensor.展开更多
A novel method is presented to build the triangular surface model and calculate the tangential stress and strain of myocardial wall ,which can be further used to reflect the left ventricle twisting—a sensitive index ...A novel method is presented to build the triangular surface model and calculate the tangential stress and strain of myocardial wall ,which can be further used to reflect the left ventricle twisting—a sensitive index to assess the systolic and diastolic function of heart. Firstly, a point distribution model is used to obtain the feature points of the ventricular surface in medical images. Secondly, the surface model is constructed by triangular mesh, and then the subdivision strategy is introduced to refine the model. Thirdly, plane projection and finite element method(FEM) are applied to calculate the tangential stress and strain.Finally, the distribution of tangential modulus of elasticity is discussed. The stimulation results show that the proposed method can be used to compute the tangential stress and strain of myocardial wall effectively and the computing result is consistent with the results mentioned in the literatures.展开更多
Molecular dynamic simulations are performed to study the nanoscratching behavior of polymers.The effects of scratching depth,scratching velocity and indenter/polymer interaction strength are investigated.It is found t...Molecular dynamic simulations are performed to study the nanoscratching behavior of polymers.The effects of scratching depth,scratching velocity and indenter/polymer interaction strength are investigated.It is found that polymer material in the scratching zone around the indenter can be removed in a ductile manner as the local temperature in the scratching zone exceeds glass transition temperature Tg.The recovery of polymer can be more significant when the temperature approaches or exceeds Tg.The tangential force,normal force and friction coefficient increase as the scratching depth increases.A larger scratching velocity leads to more material deformation and higher pile-up.The tangential force and normal force are larger for a larger scratching velocity whereas the friction coefficient is almost independent of the scratching velocities studied.It is also found that stronger indenter/polymer interaction strength results in a larger tangential force and friction coefficient.展开更多
Deformation of two-dimensional red blood cell in linear shear flow is simulated using the immersed boundary method,in which the cell is modeled as a force source instead of a real body.The effect of three constitutive...Deformation of two-dimensional red blood cell in linear shear flow is simulated using the immersed boundary method,in which the cell is modeled as a force source instead of a real body.The effect of three constitutive laws,i.e.Hookean,Neo-Hookean and Skalak elasticity,on the deformation is studied by simulating the cell movement in two linear shear flows.The results show that the effect of the constitutive laws gets more obvious as the shear rate increases.Both the aspect ratio and the inclination of the steady shapes get bigger, and the differences between the periods of the cell tank-treading motion become larger.For the same shear flow, the period with Hookean elasticity is less than the period with Neo-Hookean elasticity and bigger than the period with Skalak elasticity.展开更多
In this paper,the authors first apply the Fitzpatrick algorithm to multivariate vectorvalued osculatory rational interpolation.Then based on the Fitzpatrick algorithm and the properties of an Hermite interpolation bas...In this paper,the authors first apply the Fitzpatrick algorithm to multivariate vectorvalued osculatory rational interpolation.Then based on the Fitzpatrick algorithm and the properties of an Hermite interpolation basis,the authors present a Fitzpatrick-Neville-type algorithm for multivariate vector-valued osculatory rational interpolation.It may be used to compute the values of multivariate vector-valued osculatory rational interpolants at some points directly without computing the interpolation function explicitly.展开更多
基金Projects(52174092,51904290)supported by the National Natural Science Foundation,ChinaProject(BK20220157)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(232102321009)supported by Henan Province Science and Technology Key Project,ChinaProject(2022YCPY0202)supported by Fundamental Research Funds for the Central Universities,China。
文摘A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters.This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads,investigating the shear behaviors of joints across varying initial normal loads,normal loading frequencies,and normal loading amplitudes.Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes.Dynamic normal loading can either increase or decrease shear strength,while this study demonstrates that higher frequencies lead to enhanced friction.Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient(JRC)values of joint surfaces after shearing.Positive correlations existed between frictional energy dissipation and peak shear forces,while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis.This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.
基金The National Natural Science Foundation of China(No.10971029,11101078,11171064)the Natural Science Foundation of Jiangsu Province(No.BK2011583)
文摘The Frenet-Serret formula is used to characterize the constant angle ruled surfaces in R3. When the surfaces are the tangent developmental and normal surfaces, that is, r(s, v) = tr(s) +v(cosα(s) . t(s) +sina(s) . n(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a certain special surface. When the surfaces are normal and binormal surfaces, that is, r ( s, v ) = σ ( s ) + v ( cosa ( s ) . n(s) + since(s) . b(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a cylindrical surface.
文摘In order to make a more effective use of the data from regional digital seismograph networks and to promote the study on shear wave splitting and its application to earthquake stress-forecasting, SAM software system, i.e., the software on systematic analysis method of shear wave splitting has been developed. This paper introduces the design aims, system structure, function and characteristics about the SAM software system and shows some graphical interfaces of data input and result output. Lastly, it discusses preliminarily the study of shear wave splitting and its application to earthquake forecasting.
文摘This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the propeller and intermediate shafts, under the influence of propeller-induced static and variable hydrodynamic excitations are also studied. The transfer matrix method related to the constant coefficients of differential equation solutions is used. The advantage of the latter as compared with a well-known method of transfer matrix associated with state vector is the possibility of reducing the number of multiplied matrices when adjacent shaft segments have the same material properties and diameters. The results show that there is no risk of buckling and confirm that the strength of the shaft line depends on the value of the static tangential stresses which is the most important component of the stress tensor.
基金supported by the National Natural Science Foundation of China and Microsoft Research Asia ( No. NSFC-60870002 No. 60802087)+2 种基金NCET and the Science and Technology Department of Zhejiang Province ( No. 2009C21008 No. 2010R10006 No. 2010C33095)
文摘A novel method is presented to build the triangular surface model and calculate the tangential stress and strain of myocardial wall ,which can be further used to reflect the left ventricle twisting—a sensitive index to assess the systolic and diastolic function of heart. Firstly, a point distribution model is used to obtain the feature points of the ventricular surface in medical images. Secondly, the surface model is constructed by triangular mesh, and then the subdivision strategy is introduced to refine the model. Thirdly, plane projection and finite element method(FEM) are applied to calculate the tangential stress and strain.Finally, the distribution of tangential modulus of elasticity is discussed. The stimulation results show that the proposed method can be used to compute the tangential stress and strain of myocardial wall effectively and the computing result is consistent with the results mentioned in the literatures.
基金supported by the National Natural Science Foundation of China (Grant No.90923038)the National Basic Research Program of China (Grant No.2011CB706703)+1 种基金"111"project (Grant No.B07014)by the State Administration of Foreign Experts Affairs and the Ministry of Education of China
文摘Molecular dynamic simulations are performed to study the nanoscratching behavior of polymers.The effects of scratching depth,scratching velocity and indenter/polymer interaction strength are investigated.It is found that polymer material in the scratching zone around the indenter can be removed in a ductile manner as the local temperature in the scratching zone exceeds glass transition temperature Tg.The recovery of polymer can be more significant when the temperature approaches or exceeds Tg.The tangential force,normal force and friction coefficient increase as the scratching depth increases.A larger scratching velocity leads to more material deformation and higher pile-up.The tangential force and normal force are larger for a larger scratching velocity whereas the friction coefficient is almost independent of the scratching velocities studied.It is also found that stronger indenter/polymer interaction strength results in a larger tangential force and friction coefficient.
基金the National Natural Science Foundation of China(No.10472070)the Shanghai Leading Academic Discipline Project(No.B206)
文摘Deformation of two-dimensional red blood cell in linear shear flow is simulated using the immersed boundary method,in which the cell is modeled as a force source instead of a real body.The effect of three constitutive laws,i.e.Hookean,Neo-Hookean and Skalak elasticity,on the deformation is studied by simulating the cell movement in two linear shear flows.The results show that the effect of the constitutive laws gets more obvious as the shear rate increases.Both the aspect ratio and the inclination of the steady shapes get bigger, and the differences between the periods of the cell tank-treading motion become larger.For the same shear flow, the period with Hookean elasticity is less than the period with Neo-Hookean elasticity and bigger than the period with Skalak elasticity.
基金supported by the National Science Foundation of China under Grant No.11171133the Open Fund of Automated Reasoning and Cognition Key Laboratory of Chongqing under Grant No.CARC2014001
文摘In this paper,the authors first apply the Fitzpatrick algorithm to multivariate vectorvalued osculatory rational interpolation.Then based on the Fitzpatrick algorithm and the properties of an Hermite interpolation basis,the authors present a Fitzpatrick-Neville-type algorithm for multivariate vector-valued osculatory rational interpolation.It may be used to compute the values of multivariate vector-valued osculatory rational interpolants at some points directly without computing the interpolation function explicitly.