期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
基于优化初始中心点的K-means文本聚类算法 被引量:8
1
作者 张世博 《计算机与数字工程》 2011年第10期30-31,共2页
K-means算法终止于一个局部最优状态,所以初始中心点的选择会在很大程度上影响其聚类效果。该文针对K-means算法所存在的问题,提出了一种优化初始中心点的算法。实验表明可以有效减少迭代次数并提高聚类精度,最终获得较好的聚类效果。
关键词 K均值 聚类 初始中心点
下载PDF
基于初始中心点K均值聚类算法的改进方法研究 被引量:2
2
作者 卜天然 《通化师范学院学报》 2017年第2期60-63,共4页
传统聚类算法随机选取初始中心不能有效处理不规则数据集的边缘数据.该文主要叙述了K均值聚类算法基本思想和流程,详细分析了其算法的优点及存在的问题,提出对现有基于初始中心点K均值聚类算法的改进方法.
关键词 初始中心点 K均值聚类算法 改进方法
下载PDF
优化加权核K-means聚类初始中心点的SLIC算法 被引量:11
3
作者 杨艳 许道云 《计算机科学与探索》 CSCD 北大核心 2018年第3期494-501,共8页
超像素是近年来快速发展的一种图像预处理技术,被广泛应用于计算机视觉领域。简单线性迭代聚类(simple linear iterative clustering,SLIC)算法是其中的一种图像预处理技术框架,该算法根据像素的颜色和距离特征进行聚类来实现良好的分... 超像素是近年来快速发展的一种图像预处理技术,被广泛应用于计算机视觉领域。简单线性迭代聚类(simple linear iterative clustering,SLIC)算法是其中的一种图像预处理技术框架,该算法根据像素的颜色和距离特征进行聚类来实现良好的分割结果。然而,SLIC算法尚存在一些问题。基于优化加权核K-means聚类初始中心点,提出一种新的SLIC算法(WKK-SLIC算法)。算法基于图像像素之间的颜色相似性和空间相似性度量,采用超像素分割的归一化割公式,使用核函数来近似相似性度量。算法将像素值和坐标映射到高维特征空间中,通过对该特征空间中的每个点赋予适当的权重,使加权K均值和归一化割的目标函数的优化在数学上等价。从而通过在所提出的特征空间中迭代地应用简单的K-means聚类来优化归一化割的目标函数。在WKK-SLIC算法中,采用密度敏感的相似性度量计算空间像素点的密度,启发式地生成K-means聚类的初始中心以达到稳定的聚类结果。实验结果表明,WKK-SLIC算法在评估超像素分割的几个标准上优于SLIC算法。 展开更多
关键词 超像素 超像素分割 加权核K-means 密度 初始中心点
下载PDF
初始中心点优化的k-means算法研究 被引量:1
4
作者 付晨 《江西电力职业技术学院学报》 CAS 2012年第4期47-49,共3页
对初始中心点优化的k-means算法进行了研究,介绍了典型的初始中心点优化的k-means算法,并在其算法基础上提出了改进的算法。
关键词 K-MEANS 初始中心点优化 聚类分析
下载PDF
一种优化初始中心点的K-means算法 被引量:140
5
作者 汪中 刘贵全 陈恩红 《模式识别与人工智能》 EI CSCD 北大核心 2009年第2期299-304,共6页
针对K-means算法所存在的问题,提出一种优化初始中心点的算法.采用密度敏感的相似性度量来计算对象的密度,启发式地生成样本初始中心.然后设计一种评价函数——均衡化函数,并以均衡化函数为准则自动生成聚类数目.与传统算法相比,本文算... 针对K-means算法所存在的问题,提出一种优化初始中心点的算法.采用密度敏感的相似性度量来计算对象的密度,启发式地生成样本初始中心.然后设计一种评价函数——均衡化函数,并以均衡化函数为准则自动生成聚类数目.与传统算法相比,本文算法可得到较高质量的初始中心和较稳定的聚类结果.实验结果表明该算法的有效性和可行性. 展开更多
关键词 K-MEANS算法 密度 初始中心点 均衡化函数
原文传递
基于优化初始类中心点的K-means改进算法 被引量:10
6
作者 秦钰 荆继武 +1 位作者 向继 张爱华 《中国科学院研究生院学报》 CAS CSCD 2007年第6期771-777,共7页
K-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用.由于K-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果.提出了一种K-means算法的改进算法,首先探测数据集中的相对密集区域... K-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用.由于K-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果.提出了一种K-means算法的改进算法,首先探测数据集中的相对密集区域,再利用这些密集区域生成初始类中心点.该方法能够很好地排除类边缘点和噪声点的影响,并且能够适应数据集中各个实际类别密度分布不平衡的情况,最终获得较好的聚类效果. 展开更多
关键词 聚类 K-MEANS 初始中心
下载PDF
一种优化初始化中心的k均值web信息聚类算法 被引量:2
7
作者 张世博 周义明 《北京石油化工学院学报》 2011年第4期55-58,共4页
k-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用。由于k-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果。针对k-means算法所存在的问题,构造了文本集合的相似度矩阵,基于... k-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用。由于k-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果。针对k-means算法所存在的问题,构造了文本集合的相似度矩阵,基于平均相似度集合通过排序迭代优选出了初始中心点。实验表明此算法可以有效减少迭代次数并提高聚类精度,最终获得较好的聚类效果。 展开更多
关键词 K均值 聚类 初始中心点 优化
下载PDF
加权局部方差优化初始簇中心的K-means算法 被引量:11
8
作者 蔡宇浩 梁永全 +2 位作者 樊建聪 李璇 刘文华 《计算机科学与探索》 CSCD 北大核心 2016年第5期732-741,共10页
在传统K-means算法中,初始簇中心选择的随机性,导致聚类结果随不同的聚类中心而不同。因此出现了很多簇中心的选择方法,但是很多已有的簇中心选择算法,其聚类结果受参数调节的影响较大。针对这一问题,提出了一种新的初始簇中心选择算法... 在传统K-means算法中,初始簇中心选择的随机性,导致聚类结果随不同的聚类中心而不同。因此出现了很多簇中心的选择方法,但是很多已有的簇中心选择算法,其聚类结果受参数调节的影响较大。针对这一问题,提出了一种新的初始簇中心选择算法,称为WLV-K-means(weighted local variance K-means)。该算法采用加权局部方差度量样本的密度,以更好地发现密度高的样本,并利用改进的最大最小法,启发式地选择簇初始中心点。在UCI数据集上的实验结果表明,WLV-K-means算法不仅能够取得较好的聚类结果,而且受参数变化的影响较小,有更加稳定的表现。 展开更多
关键词 K-MEANS算法 方差 加权 最大最小法 初始中心点
下载PDF
SVD优化初始簇中心的K-means中文文本聚类算法 被引量:10
9
作者 戴月明 王明慧 +1 位作者 张明 王艳 《系统仿真学报》 CAS CSCD 北大核心 2018年第10期3835-3842,共8页
为了改善传统K-means算法在聚类过程中,聚类数目K难以准确预设,聚类结果受初始中心影响,对噪声点敏感,不稳定等缺点,同时针对文本聚类中文本向量化后数据维数较高,空间分布稀疏,存在潜在语义结构等问题,提出了一种利用奇异值分解(Singul... 为了改善传统K-means算法在聚类过程中,聚类数目K难以准确预设,聚类结果受初始中心影响,对噪声点敏感,不稳定等缺点,同时针对文本聚类中文本向量化后数据维数较高,空间分布稀疏,存在潜在语义结构等问题,提出了一种利用奇异值分解(Singular Value Decomposition, SVD)的物理意义进行粗糙分类,再结合K-means算法的中文文本聚类优化算法(SVD-Kmeans)。新算法利用SVD分解的数学意义对文本数据进行了平滑处理,同时利用SVD分解的物理意义对文本数据进行粗糙分类,将分类的结果作为K-means算法的初始聚类中心点。实验结果表明,相比其他K-means及其改进算法,SVD-Kmeans算法的聚类质量F-Measure值有明显提升。 展开更多
关键词 SVD 文本聚类 K-MEANS 初始中心点
原文传递
基于复杂图论的光通信网络节点部署研究 被引量:1
10
作者 朱赖红 王娟 《激光杂志》 CAS 北大核心 2023年第4期140-145,共6页
为避免光通信网络中不同类别用户的通信碰撞,研究基于复杂图论的光通信网络节点部署方法。分析光通信网络中节点之间的复杂关联性,基于图论构建网络节点部署模型,获取极大全连通子图并确定初始中心点位置;利用该位置优化粒子群算法的粒... 为避免光通信网络中不同类别用户的通信碰撞,研究基于复杂图论的光通信网络节点部署方法。分析光通信网络中节点之间的复杂关联性,基于图论构建网络节点部署模型,获取极大全连通子图并确定初始中心点位置;利用该位置优化粒子群算法的粒子的初始位置,获取全局的最优解;采用对称位移对优化粒子群算法,求解得到光通信网络节点在静、动两种环境的最佳部署结果。测试结果显示:该方法可实现节点的均匀部署;以最小的节点数量完成网络动态变化时的节点部署调整,且最大荷载达到107.6 MBIT/s,不同类别用户的碰撞率低于0.22%。 展开更多
关键词 复杂图论 光通信 网络节部署 全连通子图 初始中心点 通信碰撞 二维平面 动态变化
原文传递
一种用于多类别划分的中心点选择算法
11
作者 刘儒衡 《电脑知识与技术》 2018年第4X期188-190,194,共4页
传统的K-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动。当类别数目较多时,较好的初始聚类中心点集合的选择更为困难。针对K-means算法存在的这一问题,该文提出一种用于多类别划分的中心点选择算法(MC-KM)。MC-KM通过... 传统的K-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动。当类别数目较多时,较好的初始聚类中心点集合的选择更为困难。针对K-means算法存在的这一问题,该文提出一种用于多类别划分的中心点选择算法(MC-KM)。MC-KM通过放大中心点间长距离和短距离的影响的差距,增大短距离的比重,进而选择一个距离其他中心点都较远的样本作为中心点,然后使用传统K-means进行聚类。理论分析与实验结果表明,MC-KM在类数目较多的数据集中能取得更好的聚类结果,并且具有较好的稳定性。 展开更多
关键词 聚类 MC-KM K-MEANS算法 初始中心点 相似度
下载PDF
可变网格优化的K-means聚类方法 被引量:10
12
作者 万静 张超 +1 位作者 何云斌 李松 《小型微型计算机系统》 CSCD 北大核心 2018年第1期95-99,共5页
传统k-means算法需要人为指定聚类数k,对初始中心点的选取比较敏感,只能发现球状簇.针对k-means算法的不足,提出了基于可变网格优化的k-means聚类算法,该算法通过可变网格划分解决了随机选取初始中心点不具有代表性的问题,同时排除了噪... 传统k-means算法需要人为指定聚类数k,对初始中心点的选取比较敏感,只能发现球状簇.针对k-means算法的不足,提出了基于可变网格优化的k-means聚类算法,该算法通过可变网格划分解决了随机选取初始中心点不具有代表性的问题,同时排除了噪声的干扰.此外,针对最大密度不唯一的情况进行了研究,选取各距离最大的类簇为最优类簇.最后,基于可变网格优化的k-means算法结合BWP指标对最佳聚类数进行了优化,解决了最佳聚类数事先无法确定的问题.理论和实验结果表明,基于可变网格优化的k-means算法具有更好的有效性和可行性. 展开更多
关键词 K-MEANS聚类算法 可变网格 初始中心点 BWP指标
下载PDF
基于均衡化函数的k均值优化算法 被引量:7
13
作者 钱雪忠 施培蓓 +1 位作者 张明阳 汪中 《计算机工程》 CAS CSCD 北大核心 2008年第14期60-62,共3页
传统的k-means算法要求用户事先给定k值,限制了很多应用,初始中心点随机选择,容易导致局部极值点,常用的评价函数对于求解最优聚类数目也不理想。针对这些问题,该文提出一种新的评价函数——均衡化函数,采用基于密度的初始化中心点选择... 传统的k-means算法要求用户事先给定k值,限制了很多应用,初始中心点随机选择,容易导致局部极值点,常用的评价函数对于求解最优聚类数目也不理想。针对这些问题,该文提出一种新的评价函数——均衡化函数,采用基于密度的初始化中心点选择算法,自动生成聚类数目,实验结果表明了改进算法的有效性。 展开更多
关键词 K-均值算法 密度 初始中心点 均衡化函数
下载PDF
结合mean-shift与MST的K-means聚类算法 被引量:5
14
作者 徐沁 罗斌 《计算机工程》 CAS CSCD 2013年第12期204-210,共7页
针对初始点选择不当导致K-means陷入局部最小值问题,提出一种结合自适应mean-shift与最小生成树(MST)的K-means聚类算法。将数据对象投影到主成分分析(PCA)子空间,给出自适应mean-shift算法,并在PCA子空间内将数据向密度大的区域聚集,... 针对初始点选择不当导致K-means陷入局部最小值问题,提出一种结合自适应mean-shift与最小生成树(MST)的K-means聚类算法。将数据对象投影到主成分分析(PCA)子空间,给出自适应mean-shift算法,并在PCA子空间内将数据向密度大的区域聚集,再利用MST与图连通分量算法,找出数据的类别数和类标签,据此计算原始空间的密度峰值,并将其作为K-means聚类的初始中心点。对K-means的目标函数、聚类精度和运行时间进行比较,结果表明,该算法在较短的运行时间内能给出较优的全局解。 展开更多
关键词 聚类分析 K—means算法 初始中心点 Mean—Shift算法 主成分分析 最小生成树
下载PDF
基于稠密区域的K-medoids聚类算法 被引量:6
15
作者 赵湘民 陈曦 潘楚 《计算机工程与应用》 CSCD 北大核心 2016年第16期85-89,99,共6页
针对传统K-medoids聚类算法对初始中心点敏感,以及迭代次数较高等缺点,提出一种可行的初始化方法和中心点搜索更新策略。新算法首先利用密度可达思想为数据集中每个对象建立一个稠密区域,遴选出K个密度大且距离较远的稠密区域,把对应的... 针对传统K-medoids聚类算法对初始中心点敏感,以及迭代次数较高等缺点,提出一种可行的初始化方法和中心点搜索更新策略。新算法首先利用密度可达思想为数据集中每个对象建立一个稠密区域,遴选出K个密度大且距离较远的稠密区域,把对应的稠密区域的核心对象作为聚类算法的K个初始中心点;其次,把K个中心点搜索更新范围锁定在所选的K个有效稠密区域里。新算法在Iris、Wine、PId标准数据集中测试,获取了理想中心点和稠密区域,并且在较少的迭代次数内收敛到最优解或近似最优解。 展开更多
关键词 K-medoids聚类算法 稠密区域 初始中心点 中心搜索更新
下载PDF
改进的K-means算法 被引量:1
16
作者 王芳妮 贺兴时 +1 位作者 谌路 杨敏 《纺织高校基础科学学报》 CAS 2012年第3期370-373,共4页
针对传统K-means聚类算法对初始点敏感性问题,根据数据样本分布,采用启发式的方法选取初始聚类中心点,设计了一种均衡化评价函数,由此函数为准则自动生成聚类数目.通过实验验证了该算法的收敛性.
关键词 K-MEANS算法 数据分布 初始中心点 均衡化函数
下载PDF
基于划分的数据挖掘K-means聚类算法分析 被引量:19
17
作者 曾俊 《现代电子技术》 北大核心 2020年第3期14-17,共4页
为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成... 为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成正比,通过密度参数优化k个样本数据的聚类中心点选取;依据欧几里得距离公式对未选取的其他数据到各个聚类中心之间的距离进行计算,同时以此距离为判别标准,对各个数据进行种类划分,从而得到初始的聚类分布;初始聚类分布得到之后,对每一个分布簇进行再一次的中心点计算,并判断与之前所取中心点是否相同,直到其聚类收敛达到最优效果。最后通过葡萄酒数据集对改进算法进行验证分析,改进算法比传统K⁃means算法的聚类效果更优,能够更好地在数据挖掘当中进行聚类。 展开更多
关键词 数据挖掘 聚类分析 K⁃means聚类算法 聚类中心选取 K⁃means算法改进 初始中心点
下载PDF
基于K-means的私人微博聚类算法改进 被引量:2
18
作者 高永兵 郭文彦 +1 位作者 周环宇 聂知秘 《微型机与应用》 2014年第14期78-81,共4页
针对私人微博内容进行聚类研究,结合私人微博的内容和结构特点提出了基于K-means的改进聚类算法。通过添加引用和评论内容丰富了文本内容,降低了短文本矩阵向量严重稀疏性带来的聚类算法准确性降低的影响;通过甄别"微话题"内... 针对私人微博内容进行聚类研究,结合私人微博的内容和结构特点提出了基于K-means的改进聚类算法。通过添加引用和评论内容丰富了文本内容,降低了短文本矩阵向量严重稀疏性带来的聚类算法准确性降低的影响;通过甄别"微话题"内容和改进相似度的计算,找到初始化类别并进行初步计算得到合适的类别数目和初始中心点,解决了K-means算法中聚类数目K需人工指定和初始中心点选取随机性的问题。实验结果表明,改进后的算法不仅可以自适应地得到K值,较普通的K-means算法在聚类的准确率上有所提高。 展开更多
关键词 K-MEANS 算法 私人微博 初始中心点 自适应
下载PDF
一种改进的混合属性数据聚类算法 被引量:1
19
作者 陈丹 王振华 《电脑知识与技术(过刊)》 2010年第13期2713-2716,共4页
K-prototypes算法是处理混合属性数据的主要聚类算法,但是存在对初值敏感、参数依赖和易受"噪声"干扰等问题。为了克服以上缺点,该文对K-prototypes算法的初始中心点选择进行了研究与分析,提出了一种基于近邻法的初始中心点... K-prototypes算法是处理混合属性数据的主要聚类算法,但是存在对初值敏感、参数依赖和易受"噪声"干扰等问题。为了克服以上缺点,该文对K-prototypes算法的初始中心点选择进行了研究与分析,提出了一种基于近邻法的初始中心点选择策略对算法进行改进,算法先利用近邻法获得初始中心点集和k值,然后进行K-prototypes运算,最后加入识别异常数据点的规则。改进后的算法成功解决了传统K-prototypes算法的缺陷,而且具有更好的分类精度和稳定性。经实验证明,改进算法是正确和有效的,明显优于传统的K-prototypes算法。 展开更多
关键词 聚类分析 初始中心点 K-原型算法 聚类算法 混合属性数据
下载PDF
关于优化K-medoids聚类算法搜索策略研究 被引量:4
20
作者 朱纯 吴建华 潘毅 《计算机仿真》 CSCD 北大核心 2016年第10期244-248,277,共6页
由于传统K-medoids聚类算法对初始中心点敏感,计算迭代次数较高,存在聚类准确率不够高等缺点。为了解决中心点敏感问题,首先利用密度思想为数据集中每个对象建立一个ε0-领域,利用最大最小距离法遴选出K个密度大且距离较远的ε0-领域,... 由于传统K-medoids聚类算法对初始中心点敏感,计算迭代次数较高,存在聚类准确率不够高等缺点。为了解决中心点敏感问题,首先利用密度思想为数据集中每个对象建立一个ε0-领域,利用最大最小距离法遴选出K个密度大且距离较远的ε0-领域,把对应的ε0-领域的核心对象作为聚类算法的K个初始中心点;然后,为了解决传统K-medoids聚类算法的迭代次数较高、全局搜索的盲目性,在获取有效初始中心点的前提下,提出了以初始中心点为核心进行ε0-领域搜索更新策略,用来减少聚类算法的中心点更新迭代次数;同时,为了解决传统K-medoids聚类算法聚类准确率较低等缺点,提出了赋予簇内距离和簇间距离不同权重的准则函数,增强聚类算法的评价标准。改进后的算法在Iris和Wine数据集上进行测试,实验结果表明,初始中心点分别位于不同的簇中,降低了算法的迭代次数,提高了聚类准确率。 展开更多
关键词 聚类算法 局部密度区域 初始中心点 领域搜索策略 加权准则函数
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部