超像素是近年来快速发展的一种图像预处理技术,被广泛应用于计算机视觉领域。简单线性迭代聚类(simple linear iterative clustering,SLIC)算法是其中的一种图像预处理技术框架,该算法根据像素的颜色和距离特征进行聚类来实现良好的分...超像素是近年来快速发展的一种图像预处理技术,被广泛应用于计算机视觉领域。简单线性迭代聚类(simple linear iterative clustering,SLIC)算法是其中的一种图像预处理技术框架,该算法根据像素的颜色和距离特征进行聚类来实现良好的分割结果。然而,SLIC算法尚存在一些问题。基于优化加权核K-means聚类初始中心点,提出一种新的SLIC算法(WKK-SLIC算法)。算法基于图像像素之间的颜色相似性和空间相似性度量,采用超像素分割的归一化割公式,使用核函数来近似相似性度量。算法将像素值和坐标映射到高维特征空间中,通过对该特征空间中的每个点赋予适当的权重,使加权K均值和归一化割的目标函数的优化在数学上等价。从而通过在所提出的特征空间中迭代地应用简单的K-means聚类来优化归一化割的目标函数。在WKK-SLIC算法中,采用密度敏感的相似性度量计算空间像素点的密度,启发式地生成K-means聚类的初始中心以达到稳定的聚类结果。实验结果表明,WKK-SLIC算法在评估超像素分割的几个标准上优于SLIC算法。展开更多
在传统K-means算法中,初始簇中心选择的随机性,导致聚类结果随不同的聚类中心而不同。因此出现了很多簇中心的选择方法,但是很多已有的簇中心选择算法,其聚类结果受参数调节的影响较大。针对这一问题,提出了一种新的初始簇中心选择算法...在传统K-means算法中,初始簇中心选择的随机性,导致聚类结果随不同的聚类中心而不同。因此出现了很多簇中心的选择方法,但是很多已有的簇中心选择算法,其聚类结果受参数调节的影响较大。针对这一问题,提出了一种新的初始簇中心选择算法,称为WLV-K-means(weighted local variance K-means)。该算法采用加权局部方差度量样本的密度,以更好地发现密度高的样本,并利用改进的最大最小法,启发式地选择簇初始中心点。在UCI数据集上的实验结果表明,WLV-K-means算法不仅能够取得较好的聚类结果,而且受参数变化的影响较小,有更加稳定的表现。展开更多
为了改善传统K-means算法在聚类过程中,聚类数目K难以准确预设,聚类结果受初始中心影响,对噪声点敏感,不稳定等缺点,同时针对文本聚类中文本向量化后数据维数较高,空间分布稀疏,存在潜在语义结构等问题,提出了一种利用奇异值分解(Singul...为了改善传统K-means算法在聚类过程中,聚类数目K难以准确预设,聚类结果受初始中心影响,对噪声点敏感,不稳定等缺点,同时针对文本聚类中文本向量化后数据维数较高,空间分布稀疏,存在潜在语义结构等问题,提出了一种利用奇异值分解(Singular Value Decomposition, SVD)的物理意义进行粗糙分类,再结合K-means算法的中文文本聚类优化算法(SVD-Kmeans)。新算法利用SVD分解的数学意义对文本数据进行了平滑处理,同时利用SVD分解的物理意义对文本数据进行粗糙分类,将分类的结果作为K-means算法的初始聚类中心点。实验结果表明,相比其他K-means及其改进算法,SVD-Kmeans算法的聚类质量F-Measure值有明显提升。展开更多
文摘超像素是近年来快速发展的一种图像预处理技术,被广泛应用于计算机视觉领域。简单线性迭代聚类(simple linear iterative clustering,SLIC)算法是其中的一种图像预处理技术框架,该算法根据像素的颜色和距离特征进行聚类来实现良好的分割结果。然而,SLIC算法尚存在一些问题。基于优化加权核K-means聚类初始中心点,提出一种新的SLIC算法(WKK-SLIC算法)。算法基于图像像素之间的颜色相似性和空间相似性度量,采用超像素分割的归一化割公式,使用核函数来近似相似性度量。算法将像素值和坐标映射到高维特征空间中,通过对该特征空间中的每个点赋予适当的权重,使加权K均值和归一化割的目标函数的优化在数学上等价。从而通过在所提出的特征空间中迭代地应用简单的K-means聚类来优化归一化割的目标函数。在WKK-SLIC算法中,采用密度敏感的相似性度量计算空间像素点的密度,启发式地生成K-means聚类的初始中心以达到稳定的聚类结果。实验结果表明,WKK-SLIC算法在评估超像素分割的几个标准上优于SLIC算法。
文摘在传统K-means算法中,初始簇中心选择的随机性,导致聚类结果随不同的聚类中心而不同。因此出现了很多簇中心的选择方法,但是很多已有的簇中心选择算法,其聚类结果受参数调节的影响较大。针对这一问题,提出了一种新的初始簇中心选择算法,称为WLV-K-means(weighted local variance K-means)。该算法采用加权局部方差度量样本的密度,以更好地发现密度高的样本,并利用改进的最大最小法,启发式地选择簇初始中心点。在UCI数据集上的实验结果表明,WLV-K-means算法不仅能够取得较好的聚类结果,而且受参数变化的影响较小,有更加稳定的表现。
文摘为了改善传统K-means算法在聚类过程中,聚类数目K难以准确预设,聚类结果受初始中心影响,对噪声点敏感,不稳定等缺点,同时针对文本聚类中文本向量化后数据维数较高,空间分布稀疏,存在潜在语义结构等问题,提出了一种利用奇异值分解(Singular Value Decomposition, SVD)的物理意义进行粗糙分类,再结合K-means算法的中文文本聚类优化算法(SVD-Kmeans)。新算法利用SVD分解的数学意义对文本数据进行了平滑处理,同时利用SVD分解的物理意义对文本数据进行粗糙分类,将分类的结果作为K-means算法的初始聚类中心点。实验结果表明,相比其他K-means及其改进算法,SVD-Kmeans算法的聚类质量F-Measure值有明显提升。