This paper described a rare case of adenomyoma of common bile duct. The case is a 51-year-old man who was hospitalized for yellow color skin and sclera and itching for 2 mo without abdominal pain. Nothing special was ...This paper described a rare case of adenomyoma of common bile duct. The case is a 51-year-old man who was hospitalized for yellow color skin and sclera and itching for 2 mo without abdominal pain. Nothing special was found in physical examination except yellowish skin and sclera. The clinical presentation and Computerized Tomography (CT),Magnetic resonance cholangiopancreatography (MRCP),and ultrasonography suspected a tumor of the distal bile duct. The patient was treated successfully by pancreaticoduodenectomy. Histologically,the lesion consisted of adenoid and myofibrous tissue and moderate atypia. The immunophenotype of the epithelial component was cytokeratin 7+/cytokeratin 20-. The patient has been well without any evidence of recurrence for 12 mo since his operation.展开更多
Modal identification involves estimating the modal parameters, such as modal frequencies, damping ratios, and mode shapes, of a structural system from measured data. Under the condition that noisy impulse response sig...Modal identification involves estimating the modal parameters, such as modal frequencies, damping ratios, and mode shapes, of a structural system from measured data. Under the condition that noisy impulse response signals associated with multiple input and output locations have been measured, the primary objective of this study is to apply the local or global noise removal technique for improving the modal identification based on the polyreference time domain (PTD) method. While the traditional PTD method improves modal parameter estimation by over-specifying the computational model order to absorb noise, this paper proposes an approach using the actual system order as the computational model order and rejecting much noise prior to performing modal parameter estimation algorithms. Two noise removal approaches are investigated: a "local" approach which removes noise from one signal at a time, and a "global" approach which removes the noise of multiple measured signals simultaneously. The numerical investigation in this article is based on experimental measurements from two test setups: a cantilever beam with 3 inputs and 10 outputs, and a hanged plate with 4 inputs and 32 outputs. This paper demonstrates that the proposed noise-rejection method outperforms the traditional noise-absorption PTD method in several crucial aspects.展开更多
文摘This paper described a rare case of adenomyoma of common bile duct. The case is a 51-year-old man who was hospitalized for yellow color skin and sclera and itching for 2 mo without abdominal pain. Nothing special was found in physical examination except yellowish skin and sclera. The clinical presentation and Computerized Tomography (CT),Magnetic resonance cholangiopancreatography (MRCP),and ultrasonography suspected a tumor of the distal bile duct. The patient was treated successfully by pancreaticoduodenectomy. Histologically,the lesion consisted of adenoid and myofibrous tissue and moderate atypia. The immunophenotype of the epithelial component was cytokeratin 7+/cytokeratin 20-. The patient has been well without any evidence of recurrence for 12 mo since his operation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079134 and 51009124)the NSFC Major International Joint Research Project (Grant No. 51010009)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. PCSIRT 1086)the Natural Science Foundation of Shandong Province(Grant Nos. ZR2011EEQ022 and 2009ZRA05100)the Fundamental Research Funds for the Central Universities (Grant Nos. 27R1202008A and27R1002076A)
文摘Modal identification involves estimating the modal parameters, such as modal frequencies, damping ratios, and mode shapes, of a structural system from measured data. Under the condition that noisy impulse response signals associated with multiple input and output locations have been measured, the primary objective of this study is to apply the local or global noise removal technique for improving the modal identification based on the polyreference time domain (PTD) method. While the traditional PTD method improves modal parameter estimation by over-specifying the computational model order to absorb noise, this paper proposes an approach using the actual system order as the computational model order and rejecting much noise prior to performing modal parameter estimation algorithms. Two noise removal approaches are investigated: a "local" approach which removes noise from one signal at a time, and a "global" approach which removes the noise of multiple measured signals simultaneously. The numerical investigation in this article is based on experimental measurements from two test setups: a cantilever beam with 3 inputs and 10 outputs, and a hanged plate with 4 inputs and 32 outputs. This paper demonstrates that the proposed noise-rejection method outperforms the traditional noise-absorption PTD method in several crucial aspects.