Absorption refrigeration using R22 as refrigerant and organic solution as absorbent has been widely studied and has even found its application in some cases. But with the forthcoming phasing out date of R22, the resea...Absorption refrigeration using R22 as refrigerant and organic solution as absorbent has been widely studied and has even found its application in some cases. But with the forthcoming phasing out date of R22, the research on alternative of R22 in absorption refrigeration is becoming more and more important. In this paper, the characteristics of the cycle using R134a+R32/DMF and R22/DMF respectively under different working conditions were calculated and analyzed. The comparison shows that the new working pair will not only avoid the depletion of the ozone, but also have a higher COP and refrigeration capacity.展开更多
The dynamic model of cold rolling mill based on strip flatness and thickness integrated control was proposed,containing the following sub-models:the rolling process model,the dynamic model of rolls along axial directi...The dynamic model of cold rolling mill based on strip flatness and thickness integrated control was proposed,containing the following sub-models:the rolling process model,the dynamic model of rolls along axial direction,and the compensation model.Based on the rule of volume flow rate,the dynamic rolling process model was built.The work roll and backup roll were taken as elastic continuous bodies,the effect of shear and moment of inertia were taken into consideration,and then the dynamic model of rolls was built.The two models were coupled together,and the dynamic model of rolling mill was built.In the dynamic model,the thermal expansion of the rolls,the wear of the rolls and other related parameters can not be considered.In order to compensate the dynamic model,the coupled static model of rolls and strip was applied.Then,according to the inner relationship of these models,the dynamic model and the compensation model were coupled,and the dynamic model of rolling mill based on the strip flatness and thickness integrated control was built.The dynamic simulation of the rolling process was made,and the dynamic thickness and the dynamic flatness information were obtained.This model not only provides a theory basis for the virtual rolling,but also provides a platform for the application of advanced control theory.展开更多
A digital photographic study of pool boiling with binary mixture Rll(CC13)-Rll3(CCl3CF3) was performed on a horizontal transparent heater at pressure of 0.1MPa. A high speed digital camera was applied to record th...A digital photographic study of pool boiling with binary mixture Rll(CC13)-Rll3(CCl3CF3) was performed on a horizontal transparent heater at pressure of 0.1MPa. A high speed digital camera was applied to record the bubble behaviors in boiling process. Strong effects of composition on bubble departure diameter, deparatre time, nucleation density were observed, which was attributed to the nature of the activation of the boiling surface and mass diffusion effects. The bubble departure diameter, departure period and nucleation density as functions of composition for binary mixtures R 11-R 113 were presented respectively. From the video images, it can be concluded that evaporation of microlayer is very important to the growth of bubble. It is also observed that there is not any liquid recruited into the microlayer below the bubble.展开更多
文摘Absorption refrigeration using R22 as refrigerant and organic solution as absorbent has been widely studied and has even found its application in some cases. But with the forthcoming phasing out date of R22, the research on alternative of R22 in absorption refrigeration is becoming more and more important. In this paper, the characteristics of the cycle using R134a+R32/DMF and R22/DMF respectively under different working conditions were calculated and analyzed. The comparison shows that the new working pair will not only avoid the depletion of the ozone, but also have a higher COP and refrigeration capacity.
基金Project(E2012203177)supported by the Natural Science Foundation of Hebei Province,ChinaProject(2011BAF15B01)supported by the National Science and Technology Support Plan of China+1 种基金Project(E2006001038)supported by Great Natural Science Foundation of Hebei Province,ChinaProject(NECSR-201202)supported by Open Project Program of National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,China
文摘The dynamic model of cold rolling mill based on strip flatness and thickness integrated control was proposed,containing the following sub-models:the rolling process model,the dynamic model of rolls along axial direction,and the compensation model.Based on the rule of volume flow rate,the dynamic rolling process model was built.The work roll and backup roll were taken as elastic continuous bodies,the effect of shear and moment of inertia were taken into consideration,and then the dynamic model of rolls was built.The two models were coupled together,and the dynamic model of rolling mill was built.In the dynamic model,the thermal expansion of the rolls,the wear of the rolls and other related parameters can not be considered.In order to compensate the dynamic model,the coupled static model of rolls and strip was applied.Then,according to the inner relationship of these models,the dynamic model and the compensation model were coupled,and the dynamic model of rolling mill based on the strip flatness and thickness integrated control was built.The dynamic simulation of the rolling process was made,and the dynamic thickness and the dynamic flatness information were obtained.This model not only provides a theory basis for the virtual rolling,but also provides a platform for the application of advanced control theory.
基金Supported by the National Natural Science Foundation of China (No.10355001) and the Century Programme of ChineseAcademy of Sciences.
文摘A digital photographic study of pool boiling with binary mixture Rll(CC13)-Rll3(CCl3CF3) was performed on a horizontal transparent heater at pressure of 0.1MPa. A high speed digital camera was applied to record the bubble behaviors in boiling process. Strong effects of composition on bubble departure diameter, deparatre time, nucleation density were observed, which was attributed to the nature of the activation of the boiling surface and mass diffusion effects. The bubble departure diameter, departure period and nucleation density as functions of composition for binary mixtures R 11-R 113 were presented respectively. From the video images, it can be concluded that evaporation of microlayer is very important to the growth of bubble. It is also observed that there is not any liquid recruited into the microlayer below the bubble.