In order to exploit the capability of the peak-to-average power ratio(PAPR)reduction afforded by the partial transmit sequences (PTS)approach in orthogonal frequency division multiplexing(OFDM)systems, subblock ...In order to exploit the capability of the peak-to-average power ratio(PAPR)reduction afforded by the partial transmit sequences (PTS)approach in orthogonal frequency division multiplexing(OFDM)systems, subblock partition schemes for the PTS approach are studied. The motivation is to establish the relationship between the subblock partition and the capability of PAPR reduction through the periodic autocorrelation functions (ACFs)of partial transmit sequences and the periodic cross-correlation functions(CCFs)of signal candidates.Let Q represent the variation of the square magnitudes of ACFs.It is found that the lower the Q-value is, the better PAPR performance can be achieved, which is introduced as a design criterion for subblock partition.Based on this criterion, four common partition methods are compared and an efficient partition strategy is proposed. It is shown that structured partition schemes with low computational complexity have a large Q-value, leading to a poor PAPR performance.The new strategy can be regarded as a trade-off between PAPR performance and computational complexity.The simulation results show that the strategy can achieve an optimal performance with a relatively low complexity and, moreover,does not increase the amount of side information.展开更多
To reduce energy consumption while maintaining users' Quality of Service (QoS) in Orthogonal Frequency Division Mul- tiplex Access (OFDMA) relay-enhanced net- works, an adaptive energy saving subcarrier, bit and ...To reduce energy consumption while maintaining users' Quality of Service (QoS) in Orthogonal Frequency Division Mul- tiplex Access (OFDMA) relay-enhanced net- works, an adaptive energy saving subcarrier, bit and power allocation scheme is presented. The optimal subcarrier, bit and power alloca- tion problems based on discrete adaptive modula- tion and coding scheme have been previously formulated for relay-enhanced networks, and have been reformulated into and solved by integer programming in optimization theory. If the system still has a surplus of subcarriers after resource allocation, we carry out Band- width Exchange (BE) to enable more subcar- riers to participate in transmission to save en- ergy. In addition, as the relay selection scheme is closely linked with heuristic energy saving resource allocation, a relay selection scheme is proposed. Simulation results indicate that the proposed algorithm consumes less energy when transmitting the same number of bits than greedy energy saving schemes, although its spectrum efficiency is worse.展开更多
This paper proposes a novel mapping scheme for bit-interleaved coded modulation with iterative decoding(BICM-ID).The symbol mapping is composed of two QPSK with different radiuses and phases,called cross equalization-...This paper proposes a novel mapping scheme for bit-interleaved coded modulation with iterative decoding(BICM-ID).The symbol mapping is composed of two QPSK with different radiuses and phases,called cross equalization-8PSK-quasi-semi set partitioning(CE-8PSK-Quasi-SSP).Providing the same average power,the proposed scheme can increase the minimum squared Euclidean distance(MSED)and then improve the receiving performance of BICM-ID compared with conventional symbol mapping schemes.Simultaneously,a modified iteration decoding algorithm is proposed in this paper.In the process of iteration decoding,different proportion of the extrinsic information to the systematic observations results in distinct decoding performance.At high SNR(4~9dB),the observation information plays a more important role than the extrinsic information.Simulation results show that the proportion set at 1.2 is more suitable for the novel mapping in BICM-ID.When the BER is 10^(-4),more than 0.9dB coding gain over Rayleigh channels can be achieved for the improved mapping and decoding scheme.展开更多
文摘In order to exploit the capability of the peak-to-average power ratio(PAPR)reduction afforded by the partial transmit sequences (PTS)approach in orthogonal frequency division multiplexing(OFDM)systems, subblock partition schemes for the PTS approach are studied. The motivation is to establish the relationship between the subblock partition and the capability of PAPR reduction through the periodic autocorrelation functions (ACFs)of partial transmit sequences and the periodic cross-correlation functions(CCFs)of signal candidates.Let Q represent the variation of the square magnitudes of ACFs.It is found that the lower the Q-value is, the better PAPR performance can be achieved, which is introduced as a design criterion for subblock partition.Based on this criterion, four common partition methods are compared and an efficient partition strategy is proposed. It is shown that structured partition schemes with low computational complexity have a large Q-value, leading to a poor PAPR performance.The new strategy can be regarded as a trade-off between PAPR performance and computational complexity.The simulation results show that the strategy can achieve an optimal performance with a relatively low complexity and, moreover,does not increase the amount of side information.
基金supported partially by the 973 Program under Grant No. 2012CB316100National Natural Science Foundation of China under Grants No. 61071108, No. 61032002the Central Universities Basic Scientific Research Special Fund under Grant No.SWJTU12CX097
文摘To reduce energy consumption while maintaining users' Quality of Service (QoS) in Orthogonal Frequency Division Mul- tiplex Access (OFDMA) relay-enhanced net- works, an adaptive energy saving subcarrier, bit and power allocation scheme is presented. The optimal subcarrier, bit and power alloca- tion problems based on discrete adaptive modula- tion and coding scheme have been previously formulated for relay-enhanced networks, and have been reformulated into and solved by integer programming in optimization theory. If the system still has a surplus of subcarriers after resource allocation, we carry out Band- width Exchange (BE) to enable more subcar- riers to participate in transmission to save en- ergy. In addition, as the relay selection scheme is closely linked with heuristic energy saving resource allocation, a relay selection scheme is proposed. Simulation results indicate that the proposed algorithm consumes less energy when transmitting the same number of bits than greedy energy saving schemes, although its spectrum efficiency is worse.
基金Supported by the Key Project of Chinese Ministry of Education(No.106042)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(2007[24])
文摘This paper proposes a novel mapping scheme for bit-interleaved coded modulation with iterative decoding(BICM-ID).The symbol mapping is composed of two QPSK with different radiuses and phases,called cross equalization-8PSK-quasi-semi set partitioning(CE-8PSK-Quasi-SSP).Providing the same average power,the proposed scheme can increase the minimum squared Euclidean distance(MSED)and then improve the receiving performance of BICM-ID compared with conventional symbol mapping schemes.Simultaneously,a modified iteration decoding algorithm is proposed in this paper.In the process of iteration decoding,different proportion of the extrinsic information to the systematic observations results in distinct decoding performance.At high SNR(4~9dB),the observation information plays a more important role than the extrinsic information.Simulation results show that the proportion set at 1.2 is more suitable for the novel mapping in BICM-ID.When the BER is 10^(-4),more than 0.9dB coding gain over Rayleigh channels can be achieved for the improved mapping and decoding scheme.