提出一种多用户OFDM(orthogonal frequency division multiplexing)系统下行链路,具有信道变化实时性的动态子载波、比特和功率分配联合算法(UA),在满足各个用户数据速率和BER要求的同时使总的发送功率最小。提出的算法与动态子载波分...提出一种多用户OFDM(orthogonal frequency division multiplexing)系统下行链路,具有信道变化实时性的动态子载波、比特和功率分配联合算法(UA),在满足各个用户数据速率和BER要求的同时使总的发送功率最小。提出的算法与动态子载波分配算法(WSA)相比,计算复杂度相当,在移动信道环境下仿真结果表明性能有一定的改善。展开更多
为了降低长期演进技术增强(long term evolution-advanced,LTE-A)网络中资源分配时的功率消耗,提高小区边缘用户频谱利用率,提升系统吞吐量,提出了LTE-A网络中基于下行协作多点传输(coordinated multi-point transmission/reception,Co...为了降低长期演进技术增强(long term evolution-advanced,LTE-A)网络中资源分配时的功率消耗,提高小区边缘用户频谱利用率,提升系统吞吐量,提出了LTE-A网络中基于下行协作多点传输(coordinated multi-point transmission/reception,CoMP)技术的跨层功率分配优化方法。该方法在传统功率分配方法的基础上引入了联合处理(joint processing/transmission,JP)技术,并对其进行了分析;接着将无线链路控制(radio link control,RLC)层的用户队列状态信息情况考虑到物理层的功率分配算法模块中,建立了新的跨层功率分配方案,并且使用了遗传算法对该方案进行求解;仿真结果表明和传统的几种方法比较起来,有效提高了小区平均频谱效率和边缘频谱效率,减少了功率浪费。展开更多
Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selec...Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selection are crucial problems. To address the joint optimization of power and mode selection under imperfect CSI, we propose an optimal, energy-aware joint power allocation and mode selection(JPAMS) scheme. First, we derive the closed-form solution for the power minimization for both D2 D and cellular links while satisfying different quality of service(Qo S) constraints. Second, we address the mode selection problem in presence of imperfect CSI, based on the derived power allocation. Moreover, the theoretical analysis and simulation results are presented to evaluate the proposed scheme for the D2 D communications.展开更多
Device-to-Device(D2D) communication has been proposed to facilitate cellular network with system capacity(SC) and quality of service(QoS).We consider the design of link assignment(LA),channel allocation(CA)and power c...Device-to-Device(D2D) communication has been proposed to facilitate cellular network with system capacity(SC) and quality of service(QoS).We consider the design of link assignment(LA),channel allocation(CA)and power control(PC) in D2D-aided content delivery scenario for both user fairness(UF)and system throughput(ST) under QoS requirement.Due to the complexity of the problem,we decompose it into two components:CA is formulated from graph perspective to mitigate severe co-channel interference,which turns out to be the Max K-cut problem;LA and PC are jointly optimized to utilize the gain achieved from CA for supreme performance,and specifically,genetic algorithm(GA) is adopted to optimize LA,but when deriving the fitness of each chromosome,PC optimization will be involved.Thanks to numerical results,we elucidate the efficacy of our scheme.展开更多
文摘提出一种多用户OFDM(orthogonal frequency division multiplexing)系统下行链路,具有信道变化实时性的动态子载波、比特和功率分配联合算法(UA),在满足各个用户数据速率和BER要求的同时使总的发送功率最小。提出的算法与动态子载波分配算法(WSA)相比,计算复杂度相当,在移动信道环境下仿真结果表明性能有一定的改善。
文摘为了降低长期演进技术增强(long term evolution-advanced,LTE-A)网络中资源分配时的功率消耗,提高小区边缘用户频谱利用率,提升系统吞吐量,提出了LTE-A网络中基于下行协作多点传输(coordinated multi-point transmission/reception,CoMP)技术的跨层功率分配优化方法。该方法在传统功率分配方法的基础上引入了联合处理(joint processing/transmission,JP)技术,并对其进行了分析;接着将无线链路控制(radio link control,RLC)层的用户队列状态信息情况考虑到物理层的功率分配算法模块中,建立了新的跨层功率分配方案,并且使用了遗传算法对该方案进行求解;仿真结果表明和传统的几种方法比较起来,有效提高了小区平均频谱效率和边缘频谱效率,减少了功率浪费。
基金supported in part by Important National Science and Technology Specific Projects (Grants Nos. 2011 ZX 0300300104, 2012ZX03003012)Fundamental Research Funds for Central Universities (Grant Nos. 72125377)
文摘Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selection are crucial problems. To address the joint optimization of power and mode selection under imperfect CSI, we propose an optimal, energy-aware joint power allocation and mode selection(JPAMS) scheme. First, we derive the closed-form solution for the power minimization for both D2 D and cellular links while satisfying different quality of service(Qo S) constraints. Second, we address the mode selection problem in presence of imperfect CSI, based on the derived power allocation. Moreover, the theoretical analysis and simulation results are presented to evaluate the proposed scheme for the D2 D communications.
基金supported by the National 863 projects of China(2014AA01A706)
文摘Device-to-Device(D2D) communication has been proposed to facilitate cellular network with system capacity(SC) and quality of service(QoS).We consider the design of link assignment(LA),channel allocation(CA)and power control(PC) in D2D-aided content delivery scenario for both user fairness(UF)and system throughput(ST) under QoS requirement.Due to the complexity of the problem,we decompose it into two components:CA is formulated from graph perspective to mitigate severe co-channel interference,which turns out to be the Max K-cut problem;LA and PC are jointly optimized to utilize the gain achieved from CA for supreme performance,and specifically,genetic algorithm(GA) is adopted to optimize LA,but when deriving the fitness of each chromosome,PC optimization will be involved.Thanks to numerical results,we elucidate the efficacy of our scheme.