The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is ...The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.展开更多
Oxy-steam combustion is a promising next-generation combustion technology.Conversions of fuel-N,volatile-N,and char-N to NO and N2O during combustion of a single coal particle in O2/N2and O2/H2O were studied in a tube...Oxy-steam combustion is a promising next-generation combustion technology.Conversions of fuel-N,volatile-N,and char-N to NO and N2O during combustion of a single coal particle in O2/N2and O2/H2O were studied in a tube reactor at low temperature.In O2/N2,NO reaches the maximum value in the devolatilization stage and N2O reaches the maximum value in the char combustion stage.In O2/H2O,both NO and N2O reach the maximum values in the char combustion stage.The total conversion ratios of fuel-N to NO and N2O in O2/N2are obviously higher than those in O2/H2O,due to the reduction of H2O on NO and N2O.Temperature changes the trade-off between NO and N2O.In O2/N2and O2/H2O,the conversion ratios of fuel-N,volatile-N,and char-N to NO increase with increasing temperature,and those to N2O show the opposite trends.The conversion ratios of fuel-N,volatile-N,and char-N to NO reach the maximum values at 〈O2〉=30 vol%in O2/N2.In O2/H2O,the conversion ratios of fuel-N and char-N to NO reach the maximum values at 〈O2〉=30 vol%,and the conversion ratio of volatile-N to NO shows a slightly increasing trend with increasing oxygen concentration.The conversion ratios of fuel-N,volatile-N,and char-N to N2O decrease with increasing oxygen concentration in both atmospheres.A higher coal rank has higher conversion ratios of fuel-N to NO and N2O.Anthracite coal exhibits the highest conversion ratios of fuel-N,volatile-N,and char-N to NO and N2O in both atmospheres.This work is to develop efficient ways to understand and control NO and N2O emissions for a clean and sustainable atmosphere.展开更多
Nitrogen pollution is an increasingly severe worldwide problem because of drainage of nitrogen-containing wastewater and intensive application of nitrogen-containing fertilizers. Denitrification, a key process in nitr...Nitrogen pollution is an increasingly severe worldwide problem because of drainage of nitrogen-containing wastewater and intensive application of nitrogen-containing fertilizers. Denitrification, a key process in nitrogen cycles, is commonly employed for nitrogen removal in engineered wastewater treatment systems. Biological denitrification is performed by denitrifying microbes(bacteria) that use nitrate as terminal electron acceptor. Better understanding the functions of diverse microbial populations in denitrification-based wastewater treatment systems, and the interactions of these populations with operating environments, is essential for improving both treatment performance and system stability. Recent advances in "meta-omics"(e.g., genomics, transcriptomics, proteomics, metabolomics), other molecular biology tools, and microbiome analysis have greatly enhanced such understanding. This minireview summarizes recent findings regarding microbial community structure and composition, key functional microbes and their physiology, functional genes involved in nitrogen cycle, and responses of microbes and their genes to changes of environmental factors or operating parameters, in denitrification processes in wastewater treatment systems. Of particular interest are heterotrophic denitrification systems(which require alternative organic carbon sources) and the autotrophic denitrification systems(which do not require an external carbon source). Integrated microbiome and-omics approaches have great future potential for determination of optimal environmental and biotechnological parameters,novel process development, and improvement of nitrogen removal efficiency and system stability.展开更多
The vaned-diffuser usually brings compressor instability problems under the small flow rate, for instance the spike-type rotating stall phenomenon which restricts the operation range and may cause the trouble of blade...The vaned-diffuser usually brings compressor instability problems under the small flow rate, for instance the spike-type rotating stall phenomenon which restricts the operation range and may cause the trouble of blade fatigue. Since it is difficult to mathematically predict the spike-type stall for its randomness, finding out a practical method to warning this stall precursor appears to be meaningful. The paper explains the relationship between the spike-type precursor and the blade passing irregularity coefficient to analyze whether this coefficient is appropriate for the spike-stall warning inside a centrifugal compressor with the vaned-diffuser. The advanced wireless measurements were conducted on a 1.5 stages test centrifugal compressor to capture the unsteady behavior progressing from the design to stall inception within the region between the impeller trailing edge(TE) and diffuser leading edge(LE). The circumferential distribution of the blade passing irregularity has been quantitatively revealed.The steep increase of the blade passing irregularity at some "special locations", which is responsible for the onset of the spiketype precursor, is highlighted. Also, to further understand the spike precursor inside the diffuser passage corresponding to the circumferential "special location" with maximum irregularity, the high-response transient measurement within this passage is presented. With the help of full-annulus computational fluid dynamics(CFD) simulation and the mathematical model, it is proved that the blade passing irregularity precisely reflects the flow characteristics during the spike precursor, which presents the guidance for this stall warning method.展开更多
基金supported by the Special Foundation of the China Meteorological Administration (Grant No.GYHY201506006)supported by the National Science Foundation of China (Grant Nos.41405100,41322032 and 41275031)
文摘The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.
基金Supported by the National Basic Research Program of China(2015CB251501)the Innovative Research Groups of the National Natural Science Foundation of China(51621005)
文摘Oxy-steam combustion is a promising next-generation combustion technology.Conversions of fuel-N,volatile-N,and char-N to NO and N2O during combustion of a single coal particle in O2/N2and O2/H2O were studied in a tube reactor at low temperature.In O2/N2,NO reaches the maximum value in the devolatilization stage and N2O reaches the maximum value in the char combustion stage.In O2/H2O,both NO and N2O reach the maximum values in the char combustion stage.The total conversion ratios of fuel-N to NO and N2O in O2/N2are obviously higher than those in O2/H2O,due to the reduction of H2O on NO and N2O.Temperature changes the trade-off between NO and N2O.In O2/N2and O2/H2O,the conversion ratios of fuel-N,volatile-N,and char-N to NO increase with increasing temperature,and those to N2O show the opposite trends.The conversion ratios of fuel-N,volatile-N,and char-N to NO reach the maximum values at 〈O2〉=30 vol%in O2/N2.In O2/H2O,the conversion ratios of fuel-N and char-N to NO reach the maximum values at 〈O2〉=30 vol%,and the conversion ratio of volatile-N to NO shows a slightly increasing trend with increasing oxygen concentration.The conversion ratios of fuel-N,volatile-N,and char-N to N2O decrease with increasing oxygen concentration in both atmospheres.A higher coal rank has higher conversion ratios of fuel-N to NO and N2O.Anthracite coal exhibits the highest conversion ratios of fuel-N,volatile-N,and char-N to NO and N2O in both atmospheres.This work is to develop efficient ways to understand and control NO and N2O emissions for a clean and sustainable atmosphere.
基金supported by the projects of National Key Research and Development Program of China (2016YFD0501409)
文摘Nitrogen pollution is an increasingly severe worldwide problem because of drainage of nitrogen-containing wastewater and intensive application of nitrogen-containing fertilizers. Denitrification, a key process in nitrogen cycles, is commonly employed for nitrogen removal in engineered wastewater treatment systems. Biological denitrification is performed by denitrifying microbes(bacteria) that use nitrate as terminal electron acceptor. Better understanding the functions of diverse microbial populations in denitrification-based wastewater treatment systems, and the interactions of these populations with operating environments, is essential for improving both treatment performance and system stability. Recent advances in "meta-omics"(e.g., genomics, transcriptomics, proteomics, metabolomics), other molecular biology tools, and microbiome analysis have greatly enhanced such understanding. This minireview summarizes recent findings regarding microbial community structure and composition, key functional microbes and their physiology, functional genes involved in nitrogen cycle, and responses of microbes and their genes to changes of environmental factors or operating parameters, in denitrification processes in wastewater treatment systems. Of particular interest are heterotrophic denitrification systems(which require alternative organic carbon sources) and the autotrophic denitrification systems(which do not require an external carbon source). Integrated microbiome and-omics approaches have great future potential for determination of optimal environmental and biotechnological parameters,novel process development, and improvement of nitrogen removal efficiency and system stability.
基金supported by the National Natural Science Foundation of China(Grant Nos.51770512 and 51576153)
文摘The vaned-diffuser usually brings compressor instability problems under the small flow rate, for instance the spike-type rotating stall phenomenon which restricts the operation range and may cause the trouble of blade fatigue. Since it is difficult to mathematically predict the spike-type stall for its randomness, finding out a practical method to warning this stall precursor appears to be meaningful. The paper explains the relationship between the spike-type precursor and the blade passing irregularity coefficient to analyze whether this coefficient is appropriate for the spike-stall warning inside a centrifugal compressor with the vaned-diffuser. The advanced wireless measurements were conducted on a 1.5 stages test centrifugal compressor to capture the unsteady behavior progressing from the design to stall inception within the region between the impeller trailing edge(TE) and diffuser leading edge(LE). The circumferential distribution of the blade passing irregularity has been quantitatively revealed.The steep increase of the blade passing irregularity at some "special locations", which is responsible for the onset of the spiketype precursor, is highlighted. Also, to further understand the spike precursor inside the diffuser passage corresponding to the circumferential "special location" with maximum irregularity, the high-response transient measurement within this passage is presented. With the help of full-annulus computational fluid dynamics(CFD) simulation and the mathematical model, it is proved that the blade passing irregularity precisely reflects the flow characteristics during the spike precursor, which presents the guidance for this stall warning method.