The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is...The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is also considered.The computation programs which are used to solve the differential equations in the time domain are compiled and the principal factors of concern including the angular movements at the upper and lower ends of the riser,lateral displacements and bending stresses are presented.Then the effects of current velocity,random wave,top tension,vessel mean offset,low frequency motion and internal flow velocity on the bending stresses of the riser are analyzed in detail.展开更多
A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and t...A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%.展开更多
In this paper,the effects of forward speed on the lateral vibration of a slender structure in an infinite fluid are considered.By equating the bending stress of the structure with the hydrodynamic force acting on it,t...In this paper,the effects of forward speed on the lateral vibration of a slender structure in an infinite fluid are considered.By equating the bending stress of the structure with the hydrodynamic force acting on it,the equation which governs the fluid-structure interaction of a slender structure both vibrating and moving in water is obtained.Numerical results show that the influence of forward speed on the vibration of a slender structure in water is significant.It behaves like damping,reducing both natural frequencies and responses significantly.展开更多
基金supported by the High Technology Research and Development Program of China (863 Program, Grant Nos SQ2009AA09Z3487852 and 2007AA09Z313)
文摘The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is also considered.The computation programs which are used to solve the differential equations in the time domain are compiled and the principal factors of concern including the angular movements at the upper and lower ends of the riser,lateral displacements and bending stresses are presented.Then the effects of current velocity,random wave,top tension,vessel mean offset,low frequency motion and internal flow velocity on the bending stresses of the riser are analyzed in detail.
基金Project(51175168)supported by the National Natural Science Foundation of ChinaProjects(2011GK3148,2012GK3092)supported by Science and Technology Program of Hunan Province,China
文摘A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%.
基金Supported by the National Natural Science Foundation of China under Grant No.50921001"973" Project under Grant No.2010CB832700
文摘In this paper,the effects of forward speed on the lateral vibration of a slender structure in an infinite fluid are considered.By equating the bending stress of the structure with the hydrodynamic force acting on it,the equation which governs the fluid-structure interaction of a slender structure both vibrating and moving in water is obtained.Numerical results show that the influence of forward speed on the vibration of a slender structure in water is significant.It behaves like damping,reducing both natural frequencies and responses significantly.