同时定位与建图(simultaneous localization and mapping,SLAM)是地下空间自主探测、自动巡检和应急救援的关键。然而,地下空间巷道狭长、地形复杂、光照不均等使得激光点云和视觉图像匹配极易发生退化,进而导致多源传感器数据融合SLAM...同时定位与建图(simultaneous localization and mapping,SLAM)是地下空间自主探测、自动巡检和应急救援的关键。然而,地下空间巷道狭长、地形复杂、光照不均等使得激光点云和视觉图像匹配极易发生退化,进而导致多源传感器数据融合SLAM精度不足,甚至失效。为此,本文提出一种增强稳健性的多源传感器数据动态加权融合SLAM方法。首先,在视觉图像预处理阶段,采用了一种基于色调、饱和度、亮度(hue,stauration,value,HSV)空间的图像增强技术,结合单参数同态滤波和对比度受限的自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法,有效提升了地下空间图像的亮度和对比度,从而增强了视觉里程计的稳健性。然后,通过马氏距离一致性检验方法对各传感器的数据质量进行评估,分析数据退化情况,并自适应地选择适合当前场景的传感器数据进行融合。最后,在综合考虑各传感器关键参数的基础上,构建了多源传感器因子图模型,并根据数据质量动态调整各传感器数据融合因子的权重,形成多源传感器数据权重动态组合模型。为验证本文方法的有效性,使用自主设计集成的移动机器人在地下走廊、开挖的地铁隧道和煤矿巷道等典型地下空间中分别进行了试验,并与多种主流SLAM方法进行定性、定量对比分析。结果表明:本文方法最大轨迹均方根误差(root mean square error,RMSE)仅为0.19 m,以高精度地面三维激光扫描获取的点云为参考,平均点云直接距离比较(cloud to cloud,C2C)小于0.13 m,所构建的点云地图具有较好的全局一致性和几何结构真实性,验证了本文方法在复杂地下空间具有更高的精度和稳健性。展开更多
文摘同时定位与建图(simultaneous localization and mapping,SLAM)是地下空间自主探测、自动巡检和应急救援的关键。然而,地下空间巷道狭长、地形复杂、光照不均等使得激光点云和视觉图像匹配极易发生退化,进而导致多源传感器数据融合SLAM精度不足,甚至失效。为此,本文提出一种增强稳健性的多源传感器数据动态加权融合SLAM方法。首先,在视觉图像预处理阶段,采用了一种基于色调、饱和度、亮度(hue,stauration,value,HSV)空间的图像增强技术,结合单参数同态滤波和对比度受限的自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法,有效提升了地下空间图像的亮度和对比度,从而增强了视觉里程计的稳健性。然后,通过马氏距离一致性检验方法对各传感器的数据质量进行评估,分析数据退化情况,并自适应地选择适合当前场景的传感器数据进行融合。最后,在综合考虑各传感器关键参数的基础上,构建了多源传感器因子图模型,并根据数据质量动态调整各传感器数据融合因子的权重,形成多源传感器数据权重动态组合模型。为验证本文方法的有效性,使用自主设计集成的移动机器人在地下走廊、开挖的地铁隧道和煤矿巷道等典型地下空间中分别进行了试验,并与多种主流SLAM方法进行定性、定量对比分析。结果表明:本文方法最大轨迹均方根误差(root mean square error,RMSE)仅为0.19 m,以高精度地面三维激光扫描获取的点云为参考,平均点云直接距离比较(cloud to cloud,C2C)小于0.13 m,所构建的点云地图具有较好的全局一致性和几何结构真实性,验证了本文方法在复杂地下空间具有更高的精度和稳健性。