期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多粒子群协同的动态多目标优化算法及应用 被引量:21
1
作者 胡成玉 姚宏 颜雪松 《计算机研究与发展》 EI CSCD 北大核心 2013年第6期1313-1323,共11页
在现实生活中大多数多目标优化问题都随时间变化,这就要求优化算法在时间约束内快速找到动态变化Pareto最优解或Pareto边界.基于此,提出一种基于多种群协同的动态多目标粒子群改进算法,旨在利用多种群竞争和协作两种模式互相配合,从而... 在现实生活中大多数多目标优化问题都随时间变化,这就要求优化算法在时间约束内快速找到动态变化Pareto最优解或Pareto边界.基于此,提出一种基于多种群协同的动态多目标粒子群改进算法,旨在利用多种群竞争和协作两种模式互相配合,从而达到快速高效求解动态多目标优化问题的目的,多种群竞争模式主要任务是对解空间进行"勘探"搜索,当竞争失效后,自适应切换到协作模式对解空间进行"开采"搜索.通过对多种群协同搜索概率分析,证明多种群相比单种群具有更高的搜索效率,通过对3类动态多目标测试函数仿真,验证了改进算法的有效性;最后将该方法应用于动态系统PID控制器的参数整定上,得到了较优的控制参数,取得满意的控制效果. 展开更多
关键词 多粒子群协同 动态多目标优化问题 动态系统 PID控制 柯西变异
下载PDF
基于决策变量时域变化特征分类的动态多目标进化算法
2
作者 闵芬 董文波 丁炜超 《自动化学报》 EI CAS CSCD 北大核心 2024年第11期2154-2176,共23页
动态多目标优化问题(Dynamic multi-objective optimization problems,DMOPs)广泛存在于科学研究和工程实践中,其主要考虑在动态环境下同时联合优化多个冲突目标.现有方法往往关注于目标空间的时域特征,忽视了对单个决策变量变化特性的... 动态多目标优化问题(Dynamic multi-objective optimization problems,DMOPs)广泛存在于科学研究和工程实践中,其主要考虑在动态环境下同时联合优化多个冲突目标.现有方法往往关注于目标空间的时域特征,忽视了对单个决策变量变化特性的探索与利用,从而在处理更复杂的问题时不能有效引导种群收敛.为此,提出一种基于决策变量时域变化特征分类的动态多目标进化算法(Dynamic multi-objective evolutionary algorithm based on classification of decision variable temporal change characteristics,FT-DMOEA).所提算法在环境动态变化时,首先基于决策变量时域变化特征分类方法将当前时刻决策变量划分为线性变化和非线性变化两种类型;然后分别采用拉格朗日外插法和傅里叶预测模型对线性和非线性变化决策变量进行下一时刻的初始化操作.为了更有效地识别非线性决策变量变化模式,傅里叶预测模型通过傅里叶变换将历史种群数据从时域转换到频域,在分析周期性频率特征后,使用自回归模型进行频谱估计后再反变换至时域.在多个基准数据集上和其他算法进行对比,实验结果表明,所提算法是有效的. 展开更多
关键词 傅里叶变换 动态多目标优化问题 决策变量分类 动态多目标进化算法 预测策略
下载PDF
基于Pareto解集关联与预测的动态多目标进化算法 被引量:7
3
作者 彭星光 徐德民 高晓光 《控制与决策》 EI CSCD 北大核心 2011年第4期615-618,共4页
针对动态多目标优化问题,提出一种基于Pareto解集关联与预测的动态多目标进化算法(LP-DMOEA),设计了基于超块的Pareto解集关联方法.该方法能够动态维护若干描述Pareto解变化规律的时间序列,通过对新环境下的Pareto解集进行预测来生成初... 针对动态多目标优化问题,提出一种基于Pareto解集关联与预测的动态多目标进化算法(LP-DMOEA),设计了基于超块的Pareto解集关联方法.该方法能够动态维护若干描述Pareto解变化规律的时间序列,通过对新环境下的Pareto解集进行预测来生成初始种群.将LP-DMOEA应用于非劣分类遗传算法(NSGA2),并对3类标准测试函数进行了实验,所得结果表明该方法能够有效求解动态优化问题. 展开更多
关键词 动态多目标优化问题 动态多目标进化算法 Pareto解集关联与预测 超块
原文传递
Dynamic services selection algorithm in Web services composition supporting cross-enterprises collaboration 被引量:7
4
作者 胡春华 陈晓红 梁昔明 《Journal of Central South University》 SCIE EI CAS 2009年第2期269-274,共6页
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele... Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms. 展开更多
关键词 Web services composition optimal service selection improved particle swarm optimization algorithm (IPSOA) cross-enterprises collaboration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部