A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteri...A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteristics of the rheo-diecasting components were investigated at different rotation speeds.Flow characteristics and microstructural evolution of the semi-solid slurry during the rheo-diecasting process were analyzed and the mechanical properties of the rheo-diecasting components were studied.The experimental results show that the process is able to obtain such components in which the primaryα-Mg particles are fine,nearly spherical and uniformly distributed in the matrix.When the rotation speed of internal taper barrel is 700 r/min,the primaryα-Mg particles get a mean diameter of about 45μm and a shape factor of about 0.81.The magnesium alloy melt has complex stirring-fixed flow characteristics when flowing in TBR machine.Compared with conventional die-casing process,the rheo-diecasting process can improve the mechanical properties of components;especially,the elongation is improved by 80%.展开更多
Based on the concept of melt residual bonds, a calculating model quantitatively describing the evolution of the residual bond structure of titanium melt at the melting point or in a certain range above the melting poi...Based on the concept of melt residual bonds, a calculating model quantitatively describing the evolution of the residual bond structure of titanium melt at the melting point or in a certain range above the melting point was established; i.e., both the size ds and the bond number n of the residual bond structure decrease monotonously with the increase of temperature. By mathe- matical deduction, a linear relationship between the residual bond structure size ds and the dynamic viscosity 17 of Titanium melt was revealed, i.e., η= 0.876 + 0.471·ds, which is of great significance to the investigation of the relationship between the melt microstructure and the macroscopic properties of metals with high melting temperature.展开更多
基金Project(2006CB605203) supported by National Basic Research Program of ChinaProject(2006AA03Z115) supported by the National High-tech Research and Development Program of ChinaProject(2006BAE04B09-4) supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period
文摘A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteristics of the rheo-diecasting components were investigated at different rotation speeds.Flow characteristics and microstructural evolution of the semi-solid slurry during the rheo-diecasting process were analyzed and the mechanical properties of the rheo-diecasting components were studied.The experimental results show that the process is able to obtain such components in which the primaryα-Mg particles are fine,nearly spherical and uniformly distributed in the matrix.When the rotation speed of internal taper barrel is 700 r/min,the primaryα-Mg particles get a mean diameter of about 45μm and a shape factor of about 0.81.The magnesium alloy melt has complex stirring-fixed flow characteristics when flowing in TBR machine.Compared with conventional die-casing process,the rheo-diecasting process can improve the mechanical properties of components;especially,the elongation is improved by 80%.
基金supported by the National Basic Research Program of China (Grant Nos. 2007CB613803 and 2007CB613702)
文摘Based on the concept of melt residual bonds, a calculating model quantitatively describing the evolution of the residual bond structure of titanium melt at the melting point or in a certain range above the melting point was established; i.e., both the size ds and the bond number n of the residual bond structure decrease monotonously with the increase of temperature. By mathe- matical deduction, a linear relationship between the residual bond structure size ds and the dynamic viscosity 17 of Titanium melt was revealed, i.e., η= 0.876 + 0.471·ds, which is of great significance to the investigation of the relationship between the melt microstructure and the macroscopic properties of metals with high melting temperature.