长距离输水管道水力瞬变过程中水体压强达到汽化压强时,将会发生水柱分离现象,水柱弥合将产生异常高压,导致管路振动、变形甚至爆管事故。已有的水柱分离弥合水锤数学模型主要采用特征线法(Method of characteristics,MOC)计算,并且很...长距离输水管道水力瞬变过程中水体压强达到汽化压强时,将会发生水柱分离现象,水柱弥合将产生异常高压,导致管路振动、变形甚至爆管事故。已有的水柱分离弥合水锤数学模型主要采用特征线法(Method of characteristics,MOC)计算,并且很少考虑动态摩阻引起的能量衰减。为提高水柱分离弥合水锤现象的计算精确度和稳定性,基于有限体积法二阶Godunov格式,建立了考虑动态摩阻的离散气体空穴模型(Discrete gas cavity model,DGCM)。为实现管道边界和内部单元的统一计算,提出虚拟边界的处理方法。将该模型模拟结果与实验数据以及已有的稳态摩阻模型的计算结果进行比较,并对网格数、压力修正系数等参数敏感性进行分析。结果表明,本模型能够准确模拟出纯水锤、水柱分离弥合水锤两种情况下瞬变压力,与实验数据基本一致;考虑动态摩阻的瞬态压力计算值与实验数据更吻合;与MOC相比,当库朗数小于1.0时,有限体积法二阶Godunov模型计算结果更准确、更稳定;尤其是,压力修正系数取值0.9及较密网格时数学模型能更为准确地再现实验结果。展开更多
经典的特征线法(method of characteristics,MOC)因其简单方便,边界条件易于耦合求解,常应用于有压管道瞬变流方程的数值求解.对于复杂管道系统,受库朗数限制,该方法往往需要进行波速调整或插值求解,可能出现严重的累积误差和数值耗散....经典的特征线法(method of characteristics,MOC)因其简单方便,边界条件易于耦合求解,常应用于有压管道瞬变流方程的数值求解.对于复杂管道系统,受库朗数限制,该方法往往需要进行波速调整或插值求解,可能出现严重的累积误差和数值耗散.有限体积法Godunov格式(Godunov type scheme,GTS)对管道内部库朗数具有良好的鲁棒性,但边界条件采用精确黎曼不变量方法,处理复杂.同时,以往水锤计算通常仅考虑稳态摩阻,低估了瞬变压力的衰减.文章提出并推导了考虑动态摩阻的GTS-MOC耦合模型,使用二阶GTS计算管道内部控制体,在复杂边界处采用耦合GTS-MOC方法处理.首先,针对串联管和分叉管边界条件,对精确黎曼不变量方法和MOC方法进行了理论分析.推导结果表明,在马赫数(Ma)较小的管道瞬变流求解中,两种边界处理方法结果一致,与实验结果对比分析,验证了耦合格式求解的准确性.最后,将耦合格式分别与GTS和MOC进行比较.结果证明,耦合格式可以达到和GTS相同的精度,同时,串联管道系统中MOC线性插值法和波速调整法均存在数值耗散且随时间增加更明显,耦合格式结果具有准确性和稳定性,与精确解更吻合.展开更多
文摘长距离输水管道水力瞬变过程中水体压强达到汽化压强时,将会发生水柱分离现象,水柱弥合将产生异常高压,导致管路振动、变形甚至爆管事故。已有的水柱分离弥合水锤数学模型主要采用特征线法(Method of characteristics,MOC)计算,并且很少考虑动态摩阻引起的能量衰减。为提高水柱分离弥合水锤现象的计算精确度和稳定性,基于有限体积法二阶Godunov格式,建立了考虑动态摩阻的离散气体空穴模型(Discrete gas cavity model,DGCM)。为实现管道边界和内部单元的统一计算,提出虚拟边界的处理方法。将该模型模拟结果与实验数据以及已有的稳态摩阻模型的计算结果进行比较,并对网格数、压力修正系数等参数敏感性进行分析。结果表明,本模型能够准确模拟出纯水锤、水柱分离弥合水锤两种情况下瞬变压力,与实验数据基本一致;考虑动态摩阻的瞬态压力计算值与实验数据更吻合;与MOC相比,当库朗数小于1.0时,有限体积法二阶Godunov模型计算结果更准确、更稳定;尤其是,压力修正系数取值0.9及较密网格时数学模型能更为准确地再现实验结果。
文摘经典的特征线法(method of characteristics,MOC)因其简单方便,边界条件易于耦合求解,常应用于有压管道瞬变流方程的数值求解.对于复杂管道系统,受库朗数限制,该方法往往需要进行波速调整或插值求解,可能出现严重的累积误差和数值耗散.有限体积法Godunov格式(Godunov type scheme,GTS)对管道内部库朗数具有良好的鲁棒性,但边界条件采用精确黎曼不变量方法,处理复杂.同时,以往水锤计算通常仅考虑稳态摩阻,低估了瞬变压力的衰减.文章提出并推导了考虑动态摩阻的GTS-MOC耦合模型,使用二阶GTS计算管道内部控制体,在复杂边界处采用耦合GTS-MOC方法处理.首先,针对串联管和分叉管边界条件,对精确黎曼不变量方法和MOC方法进行了理论分析.推导结果表明,在马赫数(Ma)较小的管道瞬变流求解中,两种边界处理方法结果一致,与实验结果对比分析,验证了耦合格式求解的准确性.最后,将耦合格式分别与GTS和MOC进行比较.结果证明,耦合格式可以达到和GTS相同的精度,同时,串联管道系统中MOC线性插值法和波速调整法均存在数值耗散且随时间增加更明显,耦合格式结果具有准确性和稳定性,与精确解更吻合.