本研究旨在建立虾夷扇贝的动态能量收支(Dynamic Energy Budget,DEB)数值模型,为进一步构建北方海域虾夷扇贝养殖容量评估模型奠定基础。根据DEB理论,以水温和叶绿素浓度作为强制函数,基于现场及室内实验收集DEB模型参数,针对桑沟湾养...本研究旨在建立虾夷扇贝的动态能量收支(Dynamic Energy Budget,DEB)数值模型,为进一步构建北方海域虾夷扇贝养殖容量评估模型奠定基础。根据DEB理论,以水温和叶绿素浓度作为强制函数,基于现场及室内实验收集DEB模型参数,针对桑沟湾养殖环境和虾夷扇贝生长的数据,利用STELLA软件构建了虾夷扇贝的DEB模型,以长海县养殖环境和1龄、2龄、3龄虾夷扇贝生长的数据对模型进行验证。模型的模拟结果显示:(1)构建的DEB模型能够很好地模拟虾夷扇贝软体部干重的生长,反映了不同时间的能量分配情况;(2)在桑沟湾,6月1日至9月25日期间水温的限制性强于食物限制;在长海海域,9月15日至次年的6月20日期间食物的限制性强于水温的限制,由此推断,长海海域虾夷扇贝的养殖密度过大,可能超出了海域的养殖容量。另外,敏感性分析结果显示,能量分配系数k以及食物摄食能力参数–最大体表面积吸收率PAM、半饱和常数Xk,对虾夷扇贝生长模拟结果有着较大的影响,例如,PAM提高10%,生长模拟结果可增加13%。因此,这些敏感性较大的参数需要通过室内实验或者现场实验准确测定,谨慎赋值。展开更多
为了减少插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,PHEV)的燃油消耗,设计了基于预测控制的PHEV能量管理策略。通过对整车能量分析,建立了PHEV的纵向动力学模型,考虑电压的动态特性建立了电池组的等效电路模型。建立了基于...为了减少插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,PHEV)的燃油消耗,设计了基于预测控制的PHEV能量管理策略。通过对整车能量分析,建立了PHEV的纵向动力学模型,考虑电压的动态特性建立了电池组的等效电路模型。建立了基于马尔可夫链的加速度预测模型,结合纵向动力学模型进而计算出需求转矩变化。以燃油消耗量最小为目标构建PHEV能量管理的预测控制模型,在预测时域内采用动态规划(DP)求解带约束的优化问题,将控制序列的首值施加至系统完成转矩分配并更新优化问题。仿真结果表明,基于随机模型预测控制的能量管理策略的燃油消耗量与基于规则的能量管理策略相比降低22.53%,与采用Rint等效电路模型的能量管理策略相比降低13.64%。展开更多
文摘本研究旨在建立虾夷扇贝的动态能量收支(Dynamic Energy Budget,DEB)数值模型,为进一步构建北方海域虾夷扇贝养殖容量评估模型奠定基础。根据DEB理论,以水温和叶绿素浓度作为强制函数,基于现场及室内实验收集DEB模型参数,针对桑沟湾养殖环境和虾夷扇贝生长的数据,利用STELLA软件构建了虾夷扇贝的DEB模型,以长海县养殖环境和1龄、2龄、3龄虾夷扇贝生长的数据对模型进行验证。模型的模拟结果显示:(1)构建的DEB模型能够很好地模拟虾夷扇贝软体部干重的生长,反映了不同时间的能量分配情况;(2)在桑沟湾,6月1日至9月25日期间水温的限制性强于食物限制;在长海海域,9月15日至次年的6月20日期间食物的限制性强于水温的限制,由此推断,长海海域虾夷扇贝的养殖密度过大,可能超出了海域的养殖容量。另外,敏感性分析结果显示,能量分配系数k以及食物摄食能力参数–最大体表面积吸收率PAM、半饱和常数Xk,对虾夷扇贝生长模拟结果有着较大的影响,例如,PAM提高10%,生长模拟结果可增加13%。因此,这些敏感性较大的参数需要通过室内实验或者现场实验准确测定,谨慎赋值。
文摘为了减少插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,PHEV)的燃油消耗,设计了基于预测控制的PHEV能量管理策略。通过对整车能量分析,建立了PHEV的纵向动力学模型,考虑电压的动态特性建立了电池组的等效电路模型。建立了基于马尔可夫链的加速度预测模型,结合纵向动力学模型进而计算出需求转矩变化。以燃油消耗量最小为目标构建PHEV能量管理的预测控制模型,在预测时域内采用动态规划(DP)求解带约束的优化问题,将控制序列的首值施加至系统完成转矩分配并更新优化问题。仿真结果表明,基于随机模型预测控制的能量管理策略的燃油消耗量与基于规则的能量管理策略相比降低22.53%,与采用Rint等效电路模型的能量管理策略相比降低13.64%。