电池荷电状态SOC(state of charge)作为电池管理系统中尤为重要的一部分,其准确估计成为锂离子电池研究的重点;为了提高动态工况下的SOC估计精度,对锂离子电池等效模型进行分析,基于AIC(赤池信息)准则确定二阶RC电路为等效电路模型,使...电池荷电状态SOC(state of charge)作为电池管理系统中尤为重要的一部分,其准确估计成为锂离子电池研究的重点;为了提高动态工况下的SOC估计精度,对锂离子电池等效模型进行分析,基于AIC(赤池信息)准则确定二阶RC电路为等效电路模型,使用递推最小二乘算法对模型参数进行在线辨识,为提高辨识精度,提出了带动态遗忘因子递推最小二乘的改进算法,对算法加入遗忘因子,通过电压结果误差实时动态调整算法遗忘因子取值;将递推最小二乘算法和含动态遗忘因子最小二乘算法分别与扩展卡尔曼滤波(EKF)算法进行SOC联合估计,并对比其预测效果,结果表明含有动态遗忘因子最小二乘与EKF联合估计模型具有更高的精度和鲁棒性。展开更多
针对新能源电动汽车的电量显示与安全管理问题,对其锂离子电池的荷电状态展开研究,提出了基于并行卡尔曼滤波器的全寿命下的电池荷电状态(state of charge,SOC)估计算法。建立了电池Thevenin一阶RC等效电路模型,通过开路实验的数据处理...针对新能源电动汽车的电量显示与安全管理问题,对其锂离子电池的荷电状态展开研究,提出了基于并行卡尔曼滤波器的全寿命下的电池荷电状态(state of charge,SOC)估计算法。建立了电池Thevenin一阶RC等效电路模型,通过开路实验的数据处理获取静态OCV-SOC关系表达式,并利用具有动态遗忘因子的最小二乘法对模型参数进行了辨识。以安时积分法为状态传递方程,在扩展卡尔曼滤波的基础上利用最大似然估计准则使模型噪声协方差具有自学习能力。考虑模型参数随电池寿命衰减而改变的问题设计并行结构的滤波器来分别进行电池状态估计和参数修正,保证了数据传递中的纯洁性和独立性,从而实现了全寿命下的SOC估计。经过仿真实验验证算法的快速收敛性与实时性,估计精度在2%以内。展开更多
文摘电池荷电状态SOC(state of charge)作为电池管理系统中尤为重要的一部分,其准确估计成为锂离子电池研究的重点;为了提高动态工况下的SOC估计精度,对锂离子电池等效模型进行分析,基于AIC(赤池信息)准则确定二阶RC电路为等效电路模型,使用递推最小二乘算法对模型参数进行在线辨识,为提高辨识精度,提出了带动态遗忘因子递推最小二乘的改进算法,对算法加入遗忘因子,通过电压结果误差实时动态调整算法遗忘因子取值;将递推最小二乘算法和含动态遗忘因子最小二乘算法分别与扩展卡尔曼滤波(EKF)算法进行SOC联合估计,并对比其预测效果,结果表明含有动态遗忘因子最小二乘与EKF联合估计模型具有更高的精度和鲁棒性。
文摘针对新能源电动汽车的电量显示与安全管理问题,对其锂离子电池的荷电状态展开研究,提出了基于并行卡尔曼滤波器的全寿命下的电池荷电状态(state of charge,SOC)估计算法。建立了电池Thevenin一阶RC等效电路模型,通过开路实验的数据处理获取静态OCV-SOC关系表达式,并利用具有动态遗忘因子的最小二乘法对模型参数进行了辨识。以安时积分法为状态传递方程,在扩展卡尔曼滤波的基础上利用最大似然估计准则使模型噪声协方差具有自学习能力。考虑模型参数随电池寿命衰减而改变的问题设计并行结构的滤波器来分别进行电池状态估计和参数修正,保证了数据传递中的纯洁性和独立性,从而实现了全寿命下的SOC估计。经过仿真实验验证算法的快速收敛性与实时性,估计精度在2%以内。